
Ghini Documentation
1.0.x

Mario Frasca

1 10, 2023

Contents

1 Statements 3

2 Installing Ghini 13

3 User’s Guide 23

4 Cookbook 49

5 Administration 81

6 Ghini Family 83

7 Ghini Development 89

8 Supporting Ghini 115

i

ii

Ghini Documentation, 1.0.x

Ghini is a suite of applications for managing botanical specimen collections.

• ghini.desktop lets you create and query a database representing objects and events in your
plant collection.

• ghini.web publishes highlights from your database on the web.

• ghini.pocket puts a snapshot of your database in your handheld device.

• ghini.tour assists garden visitors with a map and spoken virtual panels.

The bulk of this documentation focuses on ghini.desktop. One final chapter presents the rest
of the Ghini family: ghini.pocket, ghini.web, ghini.tour, and the data streams between software
components.

All Ghini software is open and free. Our standalone software is released under the GNU Public
License. Our client-server software follows the GNU Affero Public License.

Contents 1

http://www.opensource.org
http://www.fsf.org
http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/agpl.html

Ghini Documentation, 1.0.x

2 Contents

CHAPTER 1

Statements

1.1 Ghini’s goals and highlights

Should you use this software? This question is for you to answer. We trust that if you manage
a botanic collection, you will find Ghini overly useful and we hope that this page will convince
you about it.

This page shows how Ghini makes software meet the needs of a botanic garden.

If you already know, and all you want is to do something practical, just install the software, then
check our user-contributed recipes.

1.1.1 Botanic Garden

According to the Wikipedia, »A botanic(al) garden is a garden dedicated to the collection, cul-
tivation and display of a wide range of plants labelled with their botanical names«, and still
according to the Wikipedia, »a garden is a planned space, usually outdoors, set aside for the
display, cultivation, and enjoyment of plants and other forms of nature.«

So we have in a botanic garden both the physical space, the garden, as its dynamic, the activities
to which the garden is dedicated, activities which makes us call the garden a botanic garden.

3

installing.html
use_cases.html

Ghini Documentation, 1.0.x

1: the physical garden

2: collection related activities in the garden

4 Chapter 1. Statements

Ghini Documentation, 1.0.x

1.1.2 Botanic Garden Software

At the other end of our reasoning we have the application program Ghini, and again quoting
the Wikipedia, »an application program is a computer program designed to perform a group of
coordinated functions, tasks, or activities for the benefit of the user«, or, in short, »designed to
help people perform an activity«.

Data and algorithms within Ghini have been designed to represent the physical space and the
dynamic of a botanic garden.

3: core structure of Ghini’s database

In the above figure, a simplified view on the database, the highlighted blocks are those relative
to objects you definitely need insert in the database.

We distinguish three main sections in the database. Start reading the graph from the right hand
side, with the relevant Taxonomy information, then step to administering your Collection, and
finally consider the physical Garden.

The central element in Ghini’s point of view is the Accession. Following its links to other
database objects lets us better understand the structure:

Accession links Planting to Species
An Accession represents the action of receiving this specific plant material in
the garden. As such, Accession is an abstract concept, it links physical living
Plantings —groups of plants placed each at a Location in the garden— to the
corresponding Species. It is not the same as an acquisition from a source, because
in a single acquisition you can access material of more than one species. In other
words: a single aquisition can embark multiple accessions. An Accession has zero
or more Plantings associated to it (0..n), and it is at all times connected to exactly
1 Species. Each Planting belongs to exactly one Accession, each Species
may have multiple Accessions relating to it.

An Accession stays in the database even if all of its Plantings have been re-
moved, sold, or have died. Identifying the Species of an Accession consistently
connects all its Plantings to the Species.

Accession at the base of the history of your plants
Propagations and Contacts provide plant material for the garden; this infor-
mation is optional and smaller collectors might prefer to leave this aside. A
Propagation trial may be unsuccessful, most of the time it will result in exactly
one accession, but it may also produce slightly different taxa, so the database al-
lows for zero or more Accessions per Propagation (0..n). Also a Contact may
provide zero or more Accessions (0..n).

Accession and Verification opinions
Specialists may formulate their opinion about the Species to which an Accession
belongs, by providing a Verification, signing it, and stating the applicable level
of confidence.

1.1. Ghini’s goals and highlights 5

Ghini Documentation, 1.0.x

Accessing your own Propagations
If an Accession was obtained in the garden nursery from a successful
Propagation, the Propagation links the Accession and all of its Plantings
to a single parent Planting, the seed or the vegetative parent.

Even after the above explanation, new users generally still ask why they need pass through an
Accession screen while all they want is to insert a Plant in the collection, and again: what is
this “accession” thing anyway? Most discussions on the net don’t make the concept any clearer.
One of our users gave an example which I’m glad to include in Ghini’s documentation.

use case
1. At the beginning of 2007 we got five seedlings of Heliconia longa (a

plant Species) from our neighbour (the Contact source). Since it was
the first acquisition of the year, we named them 2007.0001 (we gave them
a single unique Accession code, with quantity 5) and we planted them
all together at one Location as a single Planting, also with quantity 5.

2. At the time of writing, nine years later, Accession 2007.0001 has 6 dis-
tinct Plantings, each at a different Locations in our garden, obtained
vegetatively (asexually) from the original 5 plants. Our only interven-
tion was splitting, moving, and of course writing this information in the
database. Total plant quantity is above 40.

3. New Plantings obtained by (assisted) sexual Propagation come in
our database under different Accession codes, where our garden is the
Contact source and where we know which of our Plantings is the seed
parent.

the above three cases translate into several short usage stories:

1. activate the menu Insert → Accession, verify the existence and correctness of the
Species Heliconia longa, specify the initial quantity of the Accession; add its
Planting at the desired Location.

2. edit Planting to correct the amount of living plants — repeat this as often as necessary.

3. edit Planting to split it at separate Locations — this produces a different Planting
under the same Accession.

4. edit Planting to add a (seed) Propagation.

5. edit Planting to update the status of the Propagation.

6. activate the menu Insert → Accession to associate an accession to a successful
Propagation trial; add the Planting at the desired Location.

In particular the ability to split a Planting at several different Locations and to keep all uni-
formly associated to one Species, or the possibility to keep information about Plantings that
have been removed from the collection, help justify the presence of the Accession abstraction
level.

6 Chapter 1. Statements

Ghini Documentation, 1.0.x

1.1.3 Hypersimplified view

People using Ghini only sporadically may prefer ignoring the database structure and look at it as
two nested sequences of objects, each element of the sequence being necessary to add element
at the next level.

In order to get down to an Accession, you will need four levels, as in this example:

A quite complete set of Families and Genera are inserted in your database at the moment Ghini
initializes it. So all you need is adding Species and Accessions, in this order.

When placing a physical Plant (relative to an Accession) somewhere in the garden, you need to
describe this “somewhere” digitally, as a Location in the garden.

1.1.4 Highlights

not-so-brief list of highlights, meant to whet your appetite.

1.1. Ghini’s goals and highlights 7

Ghini Documentation, 1.0.x

taxonomic information

When you first start Ghini, and connect to a database, Ghini will initialize the database not
only with all tables it needs to run, but it will also populate the taxon tables for ranks family
and genus, using the data from the “RBG Kew’s Family and Genera list from Vascular Plant
Families and Genera compiled by R. K. Brummitt and published by the Royal Botanic Gardens,
Kew in 1992”. In 2015 we have reviewed the data regarding the Orchidaceae, using “Tropicos,
botanical information system at the Missouri Botanical Garden - www.tropicos.org” as a source.

importing data

Ghini will let you import any data you put in an intermediate json format. What you import
will complete what you already have in the database. If you need help, you can ask some Ghini
professional to help you transform your data into Ghini’s intermediate json format.

synonyms

Ghini will allow you define synonyms for species, genera, families. Also this information can
be represented in its intermediate json format and be imported in an existing Ghini database.

scientific responsible

Ghini implements the concept of ‘accession’, intermediate between physical plant (or a group
thereof) and abstract taxon. Each accession can associate the same plants to different taxa, if
two taxonomists do not agree on the identification: each taxonomist can have their say and do
not need overwrite each other’s work. All verifications can be found back in the database, with
timestamp and signature.

helps off-line identification

Ghini allows you associate pictures to physical plants, this can help recognize the plant in case
a sticker is lost, or help taxonomic identification if a taxonomist is not available at all times.

exports and reports

Ghini will let you export a report in whatever textual format you need. It uses a powerful tem-
plating engine named ‘mako’, which will allow you export the data in a selection to whatever
format you need. Once installed, a couple of examples are available in the mako subdirectory.

8 Chapter 1. Statements

Ghini Documentation, 1.0.x

annotate your info

You can associate notes to plants, accessions, species, Notes can be categorized and used
in searches or reports.

garden or herbarium

Management of plant locations.

database history

All changes in the database is stored in the database, as history log. All changes are ‘signed’
and time-stamped. Ghini makes it easy to retrieve the list of all changes in the last working day
or week, or in any specific period in the past.

simple and powerful search

Ghini allows you search the database using simple keywords, e.g.: the name of the location or
a genus name, or you can write more complex queries, which do not reach the complexity of
SQL but allow you a decent level of detail localizing your data.

database agnostic

Ghini is not a database management system, so it does not reinvent the wheel. It works storing its
data in a SQL database, and it will connect to any database management system which accepts
a SQLAlchemy connector. This means any reasonably modern database system and includes
MySQL, PostgreSQL, Oracle. It can also work with sqlite, which, for single user purposes is
quite sufficient and efficient. If you connect Ghini to a real database system, you can consider
making the database part of a LAMP system (Linux-Apache-MySQL-Php) and include your
live data on your institution web site.

language agnostic

The program was born in English and all its technical and user documentation is first written
in that language. Both technical and user documentation use gettext, an advanced tool for
semi-automatic translation.

The program has been translated and can be used in various other languages, including Spanish
(97%), French (82%), Portuguese (71%), to name some Southern American languages, as well
as Ukrainian (100%) and Czech (71%).

Translation of documentation goes a bit slower, with only Ukrainian, Spanish and Italian at more
than 50%.

1.1. Ghini’s goals and highlights 9

Ghini Documentation, 1.0.x

platform agnostic

Installing Ghini on Windows is an easy and linear process, it will not take longer than 10 minutes.
Ghini was born on Linux and installing it on ubuntu, fedora or debian is consequently even
easier. MacOSX being based on unix, it is possible to successfully run the Linux installation
procedure on any recent Apple computer, after a few preparation steps.

easily updated

The installation process will produce an updatable installation, where updating it will take less
than one minute. Depending on the amount of feedback we receive, we will produce updates
every few days or once in a while.

unit tested

Ghini is continuously and extensively unit tested, something that makes regression of functional-
ity close to impossible. Every update is automatically quality checked, on the Travis Continuous
Integration service. Integration of TravisCI with the github platform will make it difficult for us
to release anything which has a single failing unit test.

Most changes and additions we make, come with some extra unit test, which defines the be-
haviour and will make any undesired change easily visible.

customizable/extensible

Ghini is extensible through plugins and can be customized to suit the needs of the institution.

1.2 Mission & Vision

Here we state who we are, what we think of our work, what you can expect of this project.

1.2.1 Who is behind Ghini

Ghini is a small set of programs, meant to let collection managers manage their collection also
digitally.

Ghini was born back in 2004 as Bauble, at the Belize Botanical Garden. It was later adapted to
the needs of a few more gardens. Brett Adams, the original programmer, made this software a
commons, by releasing it under a GPL license.

After years of stagnation Mario Frasca revived the project, and rebranded it as Ghini in honour
of Luca Ghini, founder of the first European botanic garden and herbarium. Mario Frasca started
advocating, travelling, distributing, developing, expanding, redefining, documenting it, and it is
now Mario Frasca writing this, looking for users, requesting feedback.

10 Chapter 1. Statements

Ghini Documentation, 1.0.x

Behind Ghini there’s not only one developer, but a small but growing global users community.

Translations are provided by volunteers who mostly stay behind the scenes, translating missing
terms or sentences, and disappearing again.

To make things clearer when we speak of Ghini, but should—and in this document we
will—indicate whether it’s Ghini(the software), or Ghini(the people), unless obviously we mean
both things.

1.2.2 Mission

Our goal as Ghini Software is to provide free software, of proven quality, and to let anybody
install it if they feel like it. We also aim at facilitating access to functional knowledge, in the
form of documentation or by laying the contact among users or between users and software
professionals.

All our sources, software and documentation, are open and free, and we welcome and stimulate
people to use and to contribute. To facilitate community forming, all our platforms can be
consulted without registration. Registration is obviously required if you want to contribute.

Ghini welcomes the formation of groups of users, bundling forces to define and finance further
development, and we welcome developers contributing software, from any corner in the world,
and we stimulate and help them comply with the high quality requirements, before we accept
the contributed code in the software sources.

1.2.3 Vision

The Vision serves to indicate the way ahead and projects a future image of what we want our
organization to be, in a realistic and attractive way. It serves as motivation because it visualizes
the challenge and direction of necessary changes in order to grow and prosper.

• by the year 2020

• reference point

• community

• development

• integration with web portal

• geographic information

1.2. Mission & Vision 11

Ghini Documentation, 1.0.x

12 Chapter 1. Statements

CHAPTER 2

Installing Ghini

2.1 Installation

ghini.desktop is a cross-platform program and it will run on unix machines like GNU/Linux and
MacOSX, as well as on Windows.

one-liner for hurried users.
Linux users just download and run the installation script. You may read the docu-
mentation later.

Windows users in a real hurry don’t the instructions and use a recent Windows
installer. You do not miss any functional feature, but you have less chances to
contribute to development.

Mac users are never in a hurry, are they?

Ghini is maintained by very few people, who focus on enhancing its functional parts, more than
on writing fancy installers. Instead of several native installers we offer a single cross-platform
installation procedure. This has a few big advantages which you will learn to appreciate as we
go.

The installation is based on running a script.

• The GNU/Linux script takes care of everything, from dependecies to installation for users
in the ghini group.

• The Windows script needs you to first install a couple things.

• On MacOSX we use the same script as on GNU/Linux. Since OSX has no default package
manager, we install one and we use it before we start the script.

13

https://raw.githubusercontent.com/Ghini/ghini.desktop/ghini-1.0-dev/scripts/devinstall.sh
https://github.com/Ghini/ghini.desktop/releases/
https://github.com/Ghini/ghini.desktop/releases/

Ghini Documentation, 1.0.x

Following our installation procedure, you will end with Ghini running within a Python virtual
environment, all Python dependencies installed locally, non conflicting with any other Python
program you may have on your system.

Dependencies that don’t fit in a Python virtual environment are: Python, virtualenv, GTK+, and
PyGTK. Their installation varies per platform.

If you later choose to remove Ghini, you simply remove the virtual environment, which is a
directory, with all of its content.

2.1.1 Installing on GNU/Linux

Open a shell terminal window, and follow the following instructions.

1. Download the devinstall.sh script:

devinstall.sh

2. Invoke the script from a terminal window, starting at the directory where you downloaded
it, like this:

bash ./devinstall.sh

The script will produce quite some output, which you can safely ignore.

global installation
When almost ready, the installation script will ask you for your password. This
lets it create a ghini user group, initialise it to just yourself, make the just
created ghini script available to the whole ghini user group.

If feeling paranoid, you can safely not give your password and interrupt the
script there.

Possibly the main advantage of a global installation is being able to find Ghini
in the application menus of your graphic environment.

3. You can now start ghini by invoking the ghini script:

ghini

1. You use the same ghini script to update ghini to the latest released production patch:

~/bin/ghini -u

This is what you would do when ghini shows you something like this:

14 Chapter 2. Installing Ghini

https://raw.githubusercontent.com/Ghini/ghini.desktop/ghini-1.0-dev/scripts/devinstall.sh

Ghini Documentation, 1.0.x

2. Users of the global installation will also type ghini to invoke the program, but they
will get to a different script, located in /usr/local/bin. This globally available
ghini script cannot be used to update a ghini installation.

3. Again the same ghini script lets you install the optional database connectors: option
-p is for PostgreSQL, option -m is for MySQL/MariaDB, but you can also install
both at the same time:

~/bin/ghini -pm

Please beware: you might need solve dependencies. How to do so, depends on which
GNU/Linux flavour you are using. Check with your distribution documentation.

4. You can also use the ghini script to switch to a different production line. At the
moment 1.0 is the stable one, but you can select 1.1 if you want to help us with its
development:

~/bin/ghini -s 1.1

beginner’s note
To run a script, first make sure you note down the name of the directory to which you
have downloaded the script, then you open a terminal window and in that window
you type bash followed by a space and the complete name of the script including
directory name, and hit on the enter key.

technical note
You can study the script to see what steps if runs for you.

In short it will install dependencies which can’t be satisfied in a virtual environ-
ment, then it will create a virtual environment named ghide, use git to download
the sources to a directory named ~/Local/github/Ghini/ghini.desktop, and

2.1. Installation 15

Ghini Documentation, 1.0.x

connect this git checkout to the ghini-1.0 branch (this you can consider a pro-
duction line), it then builds ghini, downloading all remaining dependencies in the
virtual environment, and finally it creates the ghini startup script.

If you have sudo permissions, it will be placed in /usr/local/bin, otherwise in
your ~/bin folder.

Next. . .

Connecting to a database.

2.1.2 Installing on MacOSX

Being macOS a unix environment, most things will work the same as on GNU/Linux (sort of).

First of all, you need things which are an integral part of a unix environment, but which are
missing in a off-the-shelf mac:

1. developers tools: xcode. check the wikipedia page for the version supported on your mac.

2. package manager: homebrew (tigerbrew for older OSX versions).

Installation on older macOS.
Every time we tested, we could only solve all dependencies on the two or three
most recent macOS versions. In April 2015 this excluded macOS 10.6 and older.
In September 2017 this excluded macOS 10.8 and older. We never had a problem
with the lastest macOS.

The problem lies with homebrew and some of the packages we rely on. The message
you have to fear looks like this:

Do not report this issue to Homebrew/brew or Homebrew/core!

The only solution I can offer is: please update your system.

On the bright side, if at any time in the past you did install ghini.desktop on your
older and now unsupported macOS, you will always be able to update ghini.desktop
to the latest version.

With the above installed, open a terminal window and run:

brew doctor

make sure you understand the problems it reports, and correct them. pygtk will need xquartz
and brew will not solve the dependency automatically. either install xquartz using brew or the
way you prefer:

16 Chapter 2. Installing Ghini

Ghini Documentation, 1.0.x

brew install Caskroom/cask/xquartz

then install the remaining dependencies:

brew install git
brew install pygtk # takes time and installs all dependencies

follow all instructions on how to activate what you have installed.

In particular, make sure you read and understand all reports starting with If you need to
have this software.

You will need at least the following four lines in your ~/.bash_profile:

export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export PATH="/usr/local/opt/gettext/bin:$PATH"
export PATH="/usr/local/opt/python/libexec/bin:$PATH"

Activate the profile by sourcing it:

. ~/.bash_profile

Before we can run devinstall.sh as on GNU/Linux, we still need installing a couple of python
packages, globally. Do this:

sudo -H pip install virtualenv lxml

The rest is just as on a normal unix machine. Read the above GNU/Linux instructions, follow
them, enjoy.

As an optional aesthetical step, consider packaging your ~/bin/ghini script in a platypus
application bundle. The images directory contains a 128×128 icon.

Next. . .

Connecting to a database.

2.1.3 Installing on Windows

The steps described here instruct you on how to install Git, Gtk, Python, and the python database
connectors. With this environment correctly set up, the Ghini installation procedure runs as on
GNU/Linux. The concluding steps are again Windows specific.

: Ghini has been tested with and is known to work on W-XP, W-7 up to W-10. Although it
should work fine on other versions Windows it has not been thoroughly tested.

The installation steps on Windows:

2.1. Installation 17

https://github.com/sveinbjornt/Platypus

Ghini Documentation, 1.0.x

1. download and install git (comes with a unix-like sh and includes vi). Grab it from the
Git download area.

all default options are fine, except we need git to be executable from the command prompt:

2. download and install Python 2.x (32bit). Grab it from the Python official site.

When installing Python, do put Python in the PATH:

18 Chapter 2. Installing Ghini

https://git-scm.com/download/win
https://git-scm.com/download/win
http://www.python.org

Ghini Documentation, 1.0.x

3. download pygtk from the official source. (this requires 32bit python). be sure you down-
load the “all in one” version.

Make a complete install, selecting everything:

4. (Possibly necessary, maybe superfluous) install lxml, you can grab this from the pypi

2.1. Installation 19

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/
https://pypi.python.org/pypi/lxml/3.4.4
https://pypi.python.org/pypi/lxml/3.4.4

Ghini Documentation, 1.0.x

archives

Remember you need the 32 bit version, for Python 2.7.

5. (definitely optional) download and install a database connector other than sqlite3.

If you plan using PostgreSQL, the best Windows binary library for Python is psycopg and
is Made in Italy.

6. REBOOT
hey, this is Windows, you need to reboot for changes to take effect!

7. We’re done with the dependecies, now we can download and run the batch file:

devinstall.bat

Please don’t just follow the above link. Instead: right click, save link as. . .

Also make sure you don’t let Windows convert the script to a text document.

Now Open the script to run it. Please note: in the below image, we have saved the file
twice, once letting Windows convert it to a text document, and again as a Windows Batch
File. Opening the batch file will run the script. Opening the text document will show you
the code of the batch file, which isn’t going to lead us anywhere.

20 Chapter 2. Installing Ghini

https://pypi.python.org/pypi/lxml/3.4.4
https://pypi.python.org/pypi/lxml/3.4.4
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
https://raw.githubusercontent.com/Ghini/ghini.desktop/ghini-1.0-dev/scripts/devinstall.bat

Ghini Documentation, 1.0.x

If you installed everything as described here, the first thing you should see when you
start the installation script is a window like this, and your computer will be busy during a
couple of minutes, showing you what it is doing.

Running devinstall.bat will pull the ghini.desktop repository from github to your
home directory, under Local\github\Ghini, checkout the ghini-1.0 production line,
create a virtual environment and install ghini into it.

You can also run devinstall.bat passing it as argument the numerical part of the pro-
duction line you want to follow.

This is the last installation step that depends, heavily, on a working internet connection.

The operation can take several minutes to complete, depending on the speed of your in-
ternet connection.

8. the last installation step creates the Ghini group and shortcuts in the Windows Start Menu,
for all users. To do so, you need run a script with administrative rights. The script is called
devinstall-finalize.bat, it is right in your HOME folder, and has been created at
the previous step.

Right-click on it, select run as administrator, confirm you want it to make changes to your
computer. These changes are in the Start Menu only: create the Ghini group, place the
Ghini shortcut.

9. download the batch file, it will help you staying up-to-date:

ghini-update.bat

2.1. Installation 21

https://raw.githubusercontent.com/Ghini/ghini.desktop/ghini-1.0-dev/scripts/ghini-update.bat

Ghini Documentation, 1.0.x

If you are on a recent Ghini installation, each time you start the program, Ghini will
check on the development site and alert you of any newer ghini release within your chosen
production line.

Any time you want to update your installation, just run the ghini-update.bat script, it
will hardly take one minute.

How to save a batch file, and how to run it: check the the quite detailed instructions given
for devinstall.bat.

If you need to generate PDF reports, you can use the XLS based report generator and you will
need to download and install Apache FOP. After extracting the FOP archive you will need to
include the directory you extracted to in your PATH.

If you choose for PostScript reports, you can use the Mako based report generator and there are
no further dependencies.

Next. . .

Connecting to a database.

2.1.4 Installing on Android

ghini.desktop is a desktop program, obviously you don’t install it on a handheld device, but
we do offer the option, for your Android phone or tablet, to install ghini.pocket.

ghini.pocket is a small data viewer, it comes handy if you want to have a quick idea of a plant
species, its source, and date it entered the garden, just by scanning a plant label.

Installation is as easy as it can be: just look for it in Google Play, and install it.

Export the data from ghini.desktop to pocket format, copy it to your device, enjoy.

22 Chapter 2. Installing Ghini

http://xmlgraphics.apache.org/fop/
https://play.google.com/store/apps/details?id=me.ghini.pocket

CHAPTER 3

User’s Guide

3.1 Initial Configuration

After a successful installation, more complex organizations will need configure their database,
and configure Ghini according to their database configuration. This page focuses on this task.
If you don’t know what this is about, please do read the part relative to SQLite.

3.1.1 Should you SQLite?

Is this the first time you use Ghini, are you going to work in a stand-alone setting, you have
not the faintest idea how to manage a database management system? If you answered yes to
any of the previous, you probably better stick with SQLite, the easy, fast, zero-administration
file-based database.

With SQLite, you do not need any preparation and you can continue with connecting.

On the other hand, if you want to connect more than one bauble workstation to the same database,
or if you want to make your data available for other clients, as could be a web server in a LAMP
setting, you should consider keeping your database in a database management system like Post-
greSQL or MySQL/MariaDB, both supported by Ghini.

When connecting to a database server as one of the above, you have to manually do the following:
Create at least one user; Create your database; Give at least one user full permissions on your
database; If you plan having more database users: Give one of your users the CREATEROLE
privilege; Consider the user with the CREATEROLE privilege as a super-user, not meant to handle
data directly; Keep your super-user credentials in a very safe place.

When this is done, Ghini will be able to proceed, creating the tables and importing the default
data set. The process is database-dependent and it falls beyond the scope of this manual.

23

http://www.postgresql.org
http://www.postgresql.org
https://mariadb.org/

Ghini Documentation, 1.0.x

If you already got the chills or sick at your stomach, no need to worry, just stick with SQLite,
you do not miss on features nor performance.

Some more hints if you need PostgreSQL
Start simple, don’t do all at the same time. Review the online manual, or download
and study the offline version.

As said above, create a database, a user, make this user the owner of the database,
decide whether you’re going to need multiple users, and preferably reserve a user
for database and normal user creation. This super-user should be your only user
with CREATEROLE privilege.

All normal users will need all privileges on all tables and sequences, something
you can do from the Tools→Users menu. If you have any difficulty, please open an
issue about it.

Connect using the psql interactive terminal. Create a ~/.pgpass file (read more
about it in the manual), tweak your pg_hba.conf and postgresql.conf files,
until you can connect using the command:

psql <mydb> --username <myuser> --no-password --host
→˓<mydbhost>

With the above setup, connecting from ghini will be an obvious task.

3.1.2 Connecting to a database

When you start Ghini the first thing that comes up is the connection dialog.

Quite obviously, if this is the first time you start Ghini, you have no connections yet and Ghini
will alert you about it.

24 Chapter 3. User’s Guide

https://www.postgresql.org/docs/9.4/static/index.html
https://www.postgresql.org/files/documentation/pdf/9.4/postgresql-9.4-A4.pdf
https://github.com/Ghini/ghini.desktop/issues/new
https://github.com/Ghini/ghini.desktop/issues/new
https://www.postgresql.org/docs/9.4/static/libpq-pgpass.html

Ghini Documentation, 1.0.x

This alert will show at first activation and also in the future if your connections list becomes
empty. As it says: click on Add to create your first connection.

Just insert a name for your connection, something meaningful you associate with the collection
to be represented in the database (for example: “my home garden”), and click on OK. You will
be back to the previous screen, but your connection name will be selected and the Connection
Details will have expanded.

specify the connection details

3.1. Initial Configuration 25

Ghini Documentation, 1.0.x

If you do not know what to do here, Ghini will help you stay safe. Activate the Use default
locations check box and create your first connection by clicking on Connect.
You may safely skip the remainder of this section for the time being and continue reading to the
following section.

fine-tune the connection details
By default Ghini uses the file-based SQLite database. During the installation process you had
the choice (and you still have after installation), to add database connectors other than the default
SQLite.

In this example, Ghini can connect to SQLite, PostgreSQL and MySQL, but no connector is
available for Oracle or MS SQL Server.

If you use SQLite, all you really need specify is the connection name. If you let Ghini use the
default filename then Ghini creates a database file with the same name as the connection and
.db extension, and a pictures folder with the same name and no extension, both in ~/.bauble
on Linux/MacOSX or in AppData\Roaming\Bauble on Windows.

Still with SQLite, you might have received or downloaded a bauble database, and you want to
connect to it. In this case you do not let Ghini use the default filename, but you browse in your
computer to the location where you saved the Ghini SQLite database file.

26 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

If you use a different database connector, the dialog box will look different and it will offer you
the option to fine tune all parameters needed to connect to the database of your choice.

If you are connecting to an existing database you can continue to Editing and Inserting Data
and subsequently searching-in-ghini, otherwise read on to the following section on initializing
a database for Ghini.

If you plan to associate pictures to plants, specify also the pictures root folder. The meaning of
this is explained in further detail at Pictures in Editing and Inserting Data.

A sample SQLite database
Indeed we have a sample database, from our pilot garden “El Cuchubo”, in Mom-
pox, Colombia. We have a zipped sample database for ghini-1.0.

Download and unzip it to the location of your choice, then start Ghini, create a
connection named possibly cuchubo, or sample, and edit the Connection Details.
Keep the connection type at the default SQLite, but instead of using the default
locations, make sure that Filename points to your unpacked cuchubo.db file.

3.1.3 Initialize a database

First time you open a connection to a database which had never been seen by Ghini before, Ghini
will first display an alert:

immediately followed by a question:

Be careful when manually specifying the connection parameters: the values you have entered

3.1. Initial Configuration 27

http://www.ghini.me/cuchubo-1.0.zip

Ghini Documentation, 1.0.x

may refer to an existing database, not intended for use with Ghini. By letting Ghini initialize a
database, the database will be emptied and all of its content be lost.

If you are sure you want to create a database at this connection then select “Yes”. Ghini will
then start creating the database tables and importing the default data. This can take a minute or
two so while all of the default data is imported into the database so be patient.

Once your database has been created, configured, initialized, you are ready to start Editing and
Inserting Data and subsequently Searching in Ghini.

3.2 Searching in Ghini

Searching allows you to view, browse and create reports from your data. You can perform
searches by either entering the queries in the main search entry or by using the Query Builder
to create the queries for you. The results of Ghini searches are listed in the main window.

3.2.1 Search Strategies

Ghini offers four distinct search strategies:

• by value — in all domains;

• by expression — in a few implicit fields in one explicit domain;

• by query — in one domain;

• by binomial name — only searches the Species domain.

All search strategies —with the notable exception of the binomial name search— are case in-
sensitive.

Search by Value

Search by value is the simplest way to search. You enter one or more strings and see what
matches. The result includes objects of any type (domain) where one or more of its fields
contain one or more of the search strings.

You don’t specify the search domain, all are included, nor do you indicate which fields you want
to match, this is implicit in the search domain.

The following table helps you understand the results and guides you in formulating your
searches.

28 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

search domain overview
name and shorthands field result type
family, fam epithet (family) Family
genus, gen epithet (genus) Genus
species, sp epithet (sp) × Species
vernacular, common, vern name Species
geography, geo name Geography
accession, acc code Accession
planting, plant code × Plant
location, loc code, name Location
contact, person, org, source name Contact
collection, col, coll locale Collection
tag, tags name Tag

Examples of searching by value would be: Maxillaria, Acanth, 2008.1234, 2003.2.1, indica.

Unless explicitly quoted, spaces separate search strings. For example if you search for Block
10 then Ghini will search for the strings Block and 10 and return all the results that match either
of these strings. If you want to search for Block 10 as one whole string then you should quote
the string like "Block 10".

× Composite Primary Keys
A species epithet means little without the corresponding genus, likewise a planting
code is unique only within the accession to which it belongs. In database theory ter-
minology, epithet and code are not sufficient to form a primary key for respectively
species and planting. These domains need a composite primary key.

Search by value lets you look for plantings by their complete planting code, which
includes the accession code. Taken together, Accession code and Planting code do
provide a composite primary key for plantings. For species, we have introduced
the binomial search, described below.

Search by Expression

Searching with expression gives you a little more control over what you are searching for. You
narrow the search down to a specific domain, the software defines which fields to search within
the domain you specified.

An expression is built as <domain> <operator> <value>. For example the search:
gen=Maxillaria would return all the genera that match the name Maxillaria. In this case
the domain is gen, the operator is = and the value is Maxillaria.

The above search domain overview table tells you the names of the search domains, and, per
search domain, which fields are searched.

The search string loc like block% would return all the Locations for which name or code
start with “block”. In this case the domain is loc (a shorthand for location), the operator

3.2. Searching in Ghini 29

Ghini Documentation, 1.0.x

is like (this comes from SQL and allows for “fuzzy” searching), the value is block%, the
implicitly matched fields are name and code. The percent sign is used as a wild card so if you
search for block% then it searches for all values that start with block. If you search for %10 it
searches for all values that end in 10. The string %ck%10 would search for all value that contain
ck and end in 10.

When a query takes ages to complete
You give a query, it takes time to compute, the result contains unreasonably many entries. This
happens when you intend to use a strategy, but your strings do not form a valid expression. In this
case Ghini falls back to search by value. For example the search string gen lik maxillaria
will search for the strings gen, lik, and maxillaria, returning all that match at least one of
the three criteria.

Binomial search

You can also perform a search in the database if you know the species, just by placing a few
initial letters of genus and species epithets in the search engine, correctly capitalized, i.e.: Genus
epithet with one leading capital letter, Species epithet all lowercase.

This way you can perform the search So ha.

These would be the initials for Solanum hayesii, or Solanum havanense.

Binomial search comes to compensate the limited usefulness of the above search by expression
when trying to look for a species.

It is the correct capitalization Xxxx xxxx that informs the software of your intention to perform
a binomial search. The software’s second guess will be a search by value, which will possibly
result in far more matches than you had expected.

The similar request so ha will return, in a fresh install, over 3000 objects, starting at Family
“Acalyp(ha)ceae”, ending at Geography “Western (So)uth America”.

Search by Query

Queries allow the most control over searching. With queries you can search across relations,
specific columns, combine search criteria using boolean operators like and, or, not (and their
shorthands &&, ||, !), enclose them in parentheses, and more.

Please contact the authors if you want more information, or if you volunteer to document this
more thoroughly. In the meanwhile you may start familiarizing yourself with the core structure
of Ghini’s database.

1: core structure of Ghini’s database

A few examples:

• plantings of family Fabaceae in location Block 10:

30 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

plant WHERE accession.species.genus.family.epithet=Fabaceae AND␣
→˓location.description="Block 10"

• locations that contain no plants:

location WHERE plants = Empty

• accessions associated to a species of known binomial name (e.g.: Mangifera indica):

accession WHERE species.genus.epithet=Mangifera AND species.
→˓epithet=indica

• accessions we propagated in the year 2016:

accession WHERE plants.propagations._created BETWEEN␣
→˓|datetime|2016,1,1| AND |datetime|2017,1,1|

• accessions we modified in the last three days:

accession WHERE _last_updated>|datetime|-3|

Searching with queries requires some knowledge of a little syntax and an idea of the extensive
Ghini database table structure. Both you acquire with practice, and with the help of the Query
Builder.

3.2.2 The Query Builder

Ghini offers a Query Builder, that helps you build complex search queries through a point and
click interface. To open the Query Builder click the icon to the left of the search entry or
select Tools→Query Builder from the menu.

A window will show up, which will lead you through all steps necessary to construct a correct
query that is understood by Ghini’s Query Search Strategy.

First of all you indicate the search domain, this will allow
the Query Builder complete its graphical user interface,

3.2. Searching in Ghini 31

Ghini Documentation, 1.0.x

then you add as many logical clauses as you need, con-
necting them with a and or or binary operator.

Each clause is formed of three parts: a property that can be
reached from the starting search domain, a comparison op-
erator that you select from the drop-down list, a value that
you can either type or select from the list of valid values
for the field.

Add as many search properties as you need, by clicking
on the plus sign. Select and/or next to the property name
to choose how the clauses will be combined in the search
query.

When you are done building your query click OK to perform the search.

At this point the Query Builder writes the query in the search entry, and executes it. You may
now edit the string as if you had typed it yourself. Notice how the left hand side values are
interpreted by the query builder and enclosed in single quotes if recognized as strings, left alone
if they look like numbers or the two reserved words None and Empty. You may edit the query
and insert quotes if you need them, eg if you need to literally look for the string Empty.

None is the value of an empty field. It is not the same as the zero lenght string '' nor the numeric
0 nor the boolean False nor the set Empty, it indicates that the field has no value at all.

Empty is the empty set. Being it a set, it can be matched against sets (eg: plants of an accession,
or accessions of a species), not against elements (eg: quantity of a plant or description of a
location). However, the Query Builder does not let you choose a left hand side value stopping
at a set, it expects you to select a field. Choose just any field: at the moment of producing the
query, when the Query Builder meets a clause with right hand side value the literal string Empty,
it will drop the field name and let you compare the set on the left with Empty on the right.

We have no literals False and True. These are typed values, and the Query Builder does not
know how to produce them. Instead of False type 0, and instead of True type 1.

3.2.3 Query Grammar

For those who don’t fear a bit of formal precision, the following BNF code gives you a rather
precise idea of the grammar implemented by the Query Search Strategy. Some grammatical
categories are informally defined; any missing ones are left to your fertile imagination; literals
are included in single quotes; the grammar is mostly case insensitive, unless otherwise stated:

query ::= domain 'WHERE' expression

domain ::= #(one of our search domains)
expression ::= signed_clause

| signed_clause 'AND' expression
| signed_clause 'OR' expression
;

signed_clause ::= clause
()

32 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

()
| 'NOT' clause #(not available in Query Builder)
;

clause ::= field_name binop value #(available in Query Builder)
| field_name set_binop value_list
| aggregated binop value
| field_name 'BETWEEN' value 'AND' value
| '(' expression ')'
;

field_name ::= #(path to reach a database field or connected table)
aggregated ::= aggregating_func '(' field_name ')'
aggregating_func ::= 'SUM'

| 'MIN'
| 'MAX'
| 'COUNT'
;

value ::= typed_value
| numeric_value
| none_token
| empty_token
| string_value
;

typed_value ::= '|' type_name '|' value_list '|'
numeric_value ::== #(just a number)
none_token ::= 'None' #(case sensitive)
empty_token ::= 'Empty' #(case sensitive)
string_value = quoted_string | unquoted_string

type_name ::= 'datetime' | 'bool' ; #(only ones for the time being)
quoted_string ::= '"' unquoted_string '"'
unquoted_string ::= #(alphanumeric and more)

value_list ::= value ',' value_list
| value
;

binop ::= '='
| '=='
| '!='
| '<>'
| '<'
| '<='
| '>'
| '>='
| 'LIKE'
| 'CONTAINS'
;

set_binop ::= 'IN'

3.2. Searching in Ghini 33

Ghini Documentation, 1.0.x

Please be aware that Ghini’s Query language is quite a bit more complex than what the Query
Builder can produce: Queries you can build with the Query Builder form a proper subset of the
queries recognized by the software:

query ::= domain 'WHERE' expression

domain ::= #(one of our search domains)
expression ::= clause

| clause 'AND' expression
| clause 'OR' expression
;

clause ::= field_name binop value
;

field_name ::= #(path to reach a database field or connected table)
value ::= numeric_value

| string_value
;

numeric_value ::== #(just a number)
string_value = quoted_string | unquoted_string ;

quoted_string ::= '"' unquoted_string '"'
unquoted_string ::= #(alphanumeric and more)

binop ::= '='
| '=='
| '!='
| '<>'
| '<'
| '<='
| '>'
| '>='
| 'LIKE'
| 'CONTAINS'
;

3.3 Editing and Inserting Data

The main way that we add or change information in Ghini is by using the editors. Each basic type
of data has its own editor. For example there is a Family editor, a Genus editor, an Accession
editor, etc.

To create a new record click on the Insert menu on the menubar and then select the type of
record your would like to create. This opens a new blank editor for the type.

To edit an existing record in the database right click on an item in the search results and select
Edit from the popup menu. This opens an editor that allows you to change the values on the
record that you selected.

34 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

Most types also have children which you can add by right clicking on the parent and selecting
“Add ???. . . ” on the context menu. For example, a Family has Genus children: you can add a
Genus to a Family by right clicking on a Family and selecting “Add genus”.

3.3.1 Notes

Almost all of the editors in Ghini have a Notes tab which should work the same regardless of
which editor you are using.

If you enter a web address in a note then the link shows up in the Links box when the item your
are editing is selected in the search results.

You can browse the notes for an item in the database using the Notes box at the bottom of the
screen. The Notes box is desensitized if the selected item does not have any notes.

3.3.2 Family

The Family editor allows you to add or change a botanical family.

The Family field on the editor lets you change the epithet of the family. The Family field is
required.

The Qualifier field lets you change the family qualifier. The value can either be sensu lato, sensu
stricto, or nothing.

Synonyms allow you to add other families that are synonyms with the family you are currently
editing. To add a new synonyms type in a family name in the entry. You must select a family
name from the list of completions. Once you have selected a family name that you want to add
as a synonym click on the Add button next to the synonym list and the software adds the selected
synonym to the list. To remove a synonym, select the synonym from the list and click on the
Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the family you are working on then click OK.

To save the family you are working on and add a genus to it then click on the Add Genera button.

To add another family when you are finished editing the current one click on the Next button on
the bottom. This saves the current family and opens a new blank family editor.

3.3.3 Genus

The Genus editor allows you to add or change a botanical genus.

The Family field on the genus editor allows you to choose the family for the genus. When you
begin type a family name it will show a list of families to choose from. The family name must
already exist in the database before you can set it as the family for the genus.

The Genus field allows you to set the genus for this entry.

3.3. Editing and Inserting Data 35

Ghini Documentation, 1.0.x

The Author field allows you to set the name or abbreviation of the author(s) for the genus.

Synonyms allow you to add other genera that are synonyms with the genus you are currently
editing. To add a new synonyms type in a genus name in the entry. You must select a genus
name from the list of completions. Once you have selected a genus name that you want to
add as a synonym click on the Add button next to the synonym list and it will add the selected
synonym to the list. To remove a synonym select the synonym from the list and click on the
Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the genus you are working on then click OK.

To save the genus you are working on and add a species to it then click on the Add Species
button.

To add another genus when you are finished editing the current one click on the Next button on
the bottom. This will save the current genus and open a new blank genus editor.

3.3.4 Species/Taxon

For historical reasons called a species, but by this we mean a taxon at rank species or lower.
It represents a unique name in the database. The species editor allows you to construct the
name as well as associate metadata with the taxon such as its distribution, synonyms and other
information.

The Infraspecific parts in the species editor allows you to specify the taxon further than at species
rank.

To cancel your changes without saving then click on the Cancel button.

To save the species you are working on then click OK.

To save the species you are working on and add an accession to it then click on the Add Accession
button.

To add another species when you are finished editing the current one click on the Next button
on the bottom. This will save the current species and open a new blank species editor.

3.3.5 Accessions

The Accession editor allows us to add an accession to a species. In Ghini an accession repre-
sents a group of plants or clones that are of the same taxon, are of the same propagule type (or
treatment), were received from the same source, were received at the same time.

Choose the Taxon name, add one if you forgot to do that in advance.

You may note uncertainty in identification by adding an identification qualifier, at the proper
rank, so you can for example have a plant initially identified as Iris cf. florentina by choosing
Iris florentina in the taxon name, identification qualifier ‘cf.’, qualified rank ‘species’.

Type the Accession ID, preferably also the Quantity received.

36 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

Accession Source

The source of the accessions lets you add more information about where this accession came
from. Select a Contact from the drop-down list, or choose “Garden Propagation”, which is
placed as a default first item in the list of contacts.

A Garden Propagation is the result of successful Propagation.

When accessing material from a Garden Propagation, you would initially leave the first tab alone
(General) and start from the second tab (Source). Select as Contact “Garden Propagation”,
indicate which plant is the parent plant and choose among the still not completely accessed
propagations the one you intend to add as an accession in your database.

Once you select a propagation, the software will set several fields in the General tab, which you
can now review. The Taxon (maybe you managed to obtain something slightly different than the
parent plant). The Initial quantity (in case not all plants go in the same accession). The Type of
Material, inferred from the propagation type.

3.3.6 Plant

A Plant in the Ghini database describes an individual plant in your collection. A plant belongs
to an accession, and it has a specific location.

Creating multiple plants

You can create multiple Plants by using ranges in the code entry. This is only allowed when
creating new plants and it is not possible when editing existing Plants in the database.

For example the range, 3-5 will create plant with code 3,4,5. The range 1,4-7,25 will create
plants with codes 1,4,5,6,7,25.

When you enter the range in the plant code entry the entry will turn blue to indicate that you are
now creating multiple plants. Any fields that are set while in this mode will be copied to all the
plants that are created.

Pictures

Just as almost all objects in the Ghini database can have Notes associated to them, Plants and
Species can also have Pictures: next to the tab for Notes, the Plant and the Species editors
contain an extra tab called “Pictures”. You can associate as many pictures as you might need to
a plant and to a species object.

When you associate a picture to an object, the file is copied in the pictures folder, and a miniature
(500x500) is generated and copied in the thumbnails folder inside of the pictures folder.

As of Ghini-1.0.62, Pictures are not kept in the database. To ensure pictures are available on all
terminals where you have installed and configured Ghini, you can use a network drive, or a file
sharing service like Tresorit or Dropbox.

3.3. Editing and Inserting Data 37

Ghini Documentation, 1.0.x

Remember that you have configured the pictures root folder when you specified the details of
your database connection. Again, you should make sure that the pictures root folder is shared
with your file sharing service of choice.

When a Plant or a Species in the current selection is highlighted, its pictures are displayed in
the pictures pane, the pane left of the information pane. When an Accession in the selection
is highlighted, any picture associated to the plants in the highlighted accession are displayed in
the pictures pane.

In Ghini-1.0, pictures are special notes, with category “<picture>”, and text the path to the file,
relative to the pictures root folder. In the Notes tab, Picture notes will show as normal notes,
and you can edit them without limitations.

A Plant is a physical object, so you associate to it pictures taken of that individual plant, taken
at any relevant development stage of the plant, possibly helping its identification.

Species are abstract objects, so you would associate to it pictures showing the characteristic
elements of the species, so it makes sense to associate a flora illustration to it. You can also do
that by reference: go to the Notes tab, add a note and specify as category “<picture>”, then in
the text field you type the URL for the illustration of your choice.

3.3.7 Locations

The Location editor

danger zone

The location editor contains an initially hidden section named danger zone. The widgets con-
tained in this section allow the user to merge the current location into a different location, letting
the user correct spelling mistakes or implement policy changes.

3.4 Dealing with Propagations

Ghini offers the possibility to associate Propagations trials to Plants and to document their treat-
ments and results. Treatments are integral parts of the description of a Propagation trial. If a
Propagation trial is successful, Ghini lets you associate it to a new Accession. You can only
associate one Accession to a Propagation Trial.

Here we describe how you use this part of the interface.

38 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

3.4.1 Creating a Propagation

A Propagation (trial) is obtained from a Plant. Ghini reflects this in its interface: you select a
plant, open the Plant Editor on it, activate the Propagation Tab, click on Add.

When you do the above, you get a Propagation Editor window. Ghini does not consider Propa-
gation trials as independent entities. As a result, Ghini treats the Propagation Editor as a special
editor window, which you can only reach from the Plant Editor.

For a new Propagation, you select the type of propagation (this becomes an immutable property
of the propagation) then insert the data describing it.

You will be able to edit the propagation data via the same path: select a plant, open the Plant
Editor, identify the propagation you want to edit, click on the corresponding Edit button. You
will be able to edit all properties of an existing Propagation trial, except its type.

In the case of a seed propagation trial, you have a pollen parent, and a seed parent. You should
always associate the Propagation trial to the seed parent.

: In Ghini-1.0 you specify the pollen parent plant in the “Notes” field, while Ghini-1.1 has a
(relation) field for it. According to ITF2, there might be cases in seed propagation trials where it
is not known which Plant plays which role. Again, in Ghini-1.0 you should use a note to indicate
whether this is the case, Ghini-1.1 has a (boolean) field indicating whether this is the case.

3.4.2 Using a Propagation

A Propagation trial may be successful and result in a new Accession.

Ghini helps you reflect this in the database: create a new Accession, immediately switch to the
Source tab and select “Garden Propagation” in the (admittedly somewhat misleading) Contact
field.

Start typing the plant number and a list of matching plants with propagation trials will appear
for you to select from.

Select the plant, and the list of accessed and unaccessed propagation trials will appear in the
lower half of the window.

Select a still unaccessed propagation trial from the list and click on Ok to complete the operation.

Using the data from the Propagation trial, Ghini completes some of the fields in the General tab:
Taxon name, Type of material, and possibly Provenance. You will be able to edit these fields,
but please note that the software will not prevent introducing conceptual inconsistencies in your
database.

You can associate a Propagation trial to only one Accession.

3.4. Dealing with Propagations 39

Ghini Documentation, 1.0.x

3.5 Tagging

Tagging is an easy way to give context to an object or create a collection of object that you want
to recall later.

The power in this tagging action is that you can share this selection with colleagues, who can
act on it, without the need to redo all your collecting work.

For example if you need to print accession labels of otherwise unrelated plants, you can group
the objects by tagging them with the string “relabel”. You or one of your colleagues can then
select “relabel” from the tags menu, the search view will show all the objects you tagged, and
performing a report will act on the tagged objects.

Tagging acts on the active selection, that is the items in the search results which you have se-
lected.

Please remember: you can select all result rows by pressing Ctrl-A, you can deselect everything
by pressing Ctrl-Shift-A, you can toggle tagging of a single row by Ctrl-Mouse click on
it.

Once you have an active selection, tagging can be done in two ways:

3.5.1 dialog box tagging

Press Ctrl-T or select Tag→Tag Selection from the menu, this activates a window where you
can create new tags and apply any existing tag to the selection.

The tag window is composed of three parts:

1. The upper part mentions the list of objects in your active selection. This is the list of
object of which you are editing the tags;

2. The middle part has a list of all available tags, with a checkbox that you can activate for
applying the tag to or removing the tag from the selection;

3. The lower part only holds a link to new tag creation, and the Ok button for closing the
dialog box.

If, when opening the tag dialog box, the active selection holds multiple items, then only the tags
that are common to all the selected items will have a check next to it. Tags that only apply to a
proper subset of the active selection will show with an ‘undecided’ status. Tags that don’t apply
to any object in the active selection will show blank.

The most recently created tag, or the most recently selected tag becomes the active tag, and it
shows with a check next to it in the tags menu.

40 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

3.5.2 windowless tagging

Once you have an active tag, pressing Ctrl-Y applies the active tag to all objects in the active
selection. Ctrl-Shift-Y removes the active tag from all objects in the active selection.

3.6 Generating reports

A database without exporting facilities is of little use. Ghini lets you export your data in table
format (open them in your spreadsheet editor of choice), as labels (to be printed or engraved),
as html pages or pdf or postscript documents.

3.6.1 The Report Tool

You activate the Report Tool from the main menu: Tools→Report. The Report Tools acts on a
selection, so first select something, then start the Report Tool.

Report on the whole collection.
To produce a report on your whole plant collection, a shortcut would be from the
home screen, to click on the Families: in use cell.

If your focus is more on the garden location than on taxonomy and accessions, you
would click on the Locations: total cell.

Reports are produced by a report engine, making use of a report template. Ghini relies upon
two different report engines (Mako & XSL), and offers several report templates, meant as usable
examples.

Choose the report you need, specify parameters if required, and produce the report. Ghini will
open the report in the associated application.

Configuring report templates, that’s a task for who installs and configures ghini at your insti-
tution. Basically, you create a template name, indicating the report engine and specifying the
template. Configured templates are static, once configured you are not expected to alter them.
Only the special **scratch** template can be modified on the fly.

The remainder of this page provides technical information and links regarding the formatter
engines, and gives hints on writing report templates. Writing templates comes very close to
writing a computer program, and that’s beyond the scope of this manual, but we have hints that
will definitely be useful to the interested reader.

3.6. Generating reports 41

Ghini Documentation, 1.0.x

3.6.2 Using the Mako Report Formatter

The Mako report formatter uses the Mako template language for generating reports. More in-
formation about Mako and its language can be found at makotemplates.org.

The Mako templating system should already be installed on your computer if Ghini is installed.

Creating reports with Mako is similar in the way that you would create a web page from a
template. It is much simpler than the XSL Formatter(see below) and should be relatively easy
to create template for anyone with a little but of programming experience.

The template generator will use the same file extension as the template which should indicate
the type of output the template with create. For example, to generate an HTML page from your
template you should name the template something like report.html. If the template will generate
a comma separated value file you should name the template report.csv.

The template will receive a variable called values which will contain the list of values in the
current search.

The type of each value in values will be the same as the search domain used in the search query.
For more information on search domains see search-domains.

If the query does not have a search domain then the values could all be of a different type and
the Mako template should prepared to handle them.

3.6.3 Using the XSL Report Formatter

The XSL report formatter requires an XSL to PDF renderer to convert the data to a PDF file.
Apache FOP is is a free and open-source XSL->PDF renderer and is recommended.

If using Linux, Apache FOP should be installable using your package manager. On De-
bian/Ubuntu it is installable as fop in Synaptic or using the following command:

apt-get install fop

Installing Apache FOP on Windows

You have two options for installing FOP on Windows. The easiest way is to download the
prebuilt ApacheFOP-0.95-1-setup.exe installer.

Alternatively you can download the archive. After extracting the archive you must add the
directory you extracted the archive to to your PATH environment variable.

42 Chapter 3. User’s Guide

http://www.makotemplates.org
http://code.google.com/p/apache-fop-installer/downloads/detail?name=ApacheFOP-0.95-1-setup.exe&can=2&q=#makechanges
http://www.apache.org/dist/xmlgraphics/fop/binaries/

Ghini Documentation, 1.0.x

3.7 Importing and Exporting Data

Although Ghini can be extended through plugins to support alternate import and export formats,
by default it can only import and export comma separated values files or CSV.

There is some support for exporting to the Access for Biological Collections Data it is limited.

There is also limited support for exporting to an XML format that more or less reflects exactly
the tables and row of the database.

Exporting ABCD and XML will not be covered here.

: Importing files will most likely destroy any data you have in the database so make sure
you have backed up your data.

3.7.1 Importing from CSV

In general it is best to only import CSV files into Ghini that were previously exported from
Ghini. It is possible to import any CSV file but that is more advanced that this doc will cover.

To import CSV files into Ghini select Tools→Export→Comma Separated Values from the menu.

After clicking OK on the dialog that ask if you are sure you know what you’re doing a file
chooser will open. In the file chooser select the files you want to import.

3.7.2 Exporting to CSV

To export the Ghini data to CSV select Tools→Export→Comma Separated Values from the
menu.

This tool will ask you to select a directory to export the CSV data. All of the tables in Ghini
will be exported to files in the format tablename.txt where tablename is the name of the table
where the data was exported from.

3.7.3 Importing from JSON

This is the way to import data into an existing database, without destroying previous content. A
typical example of this functionality would be importing your digital collection into a fresh, just
initialized Ghini database. Converting a database into bauble json interchange format is beyond
the scope of this manual, please contact one of the authors if you need any further help.

Using the Ghini json interchange format, you can import data which you have exported from a
different Ghini installation.

3.7. Importing and Exporting Data 43

Ghini Documentation, 1.0.x

3.7.4 Exporting to JSON

This feature is still under development.

when you activate this export tool, you are given the choice to specify what to export. You can
use the current selection to limit the span of the export, or you can start at the complete content
of a domain, to be chosen among Species, Accession, Plant.

Exporting Species will only export the complete taxonomic information in your database. Ac-
cession will export all your accessions plus all the taxonomic information it refers to: unreferred
to taxa will not be exported. Plant will export all living plants (some accession might not be
included), all referred to locations and taxa.

3.7.5 Importing from a Generic Database

This functionality is the object of issue #127, for which we have no generic solution yet.

If you’re interested in importing data from some flat file (e.g.: Excel spreadsheet) or from any
database, contact the developers.

3.7.6 Importing a Pictures Collection

We can consider a collection of plant pictures as a particular form of botanical database, in
which each picture is clearly associated with one specific plant.

Even without using a photo collection software, you can associate pictures to accessions by
following one and the same clear rule when naming picture files.

For example, 2018.0020.1 (4) Epidendrum.jpg would be the name of the fourth picture
for plant number 1 within accession 2018.0020, identified to rank genus as an Epidendrum.

44 Chapter 3. User’s Guide

https://github.com/Ghini/ghini.desktop/issues/127

Ghini Documentation, 1.0.x

The Tools→Import→Pictures functionality here described is meant for importing an ordered
collection of plant pictures either to initialize a ghini database, or for periodically adding to it.

Use Tools→Import→Pictures to activate this import tool. Import goes in several steps: param-
eter definition; data revision and confirmation; the import step proper; finally review the import
log. At the first two steps you can confirm the data and go to the next step by clicking on the
next button, or you can go back to the previous step by clicking on the prev button. Once the
import is done and you’re reviewing the log, you can only either confirm —or abort— the whole
transaction.

In the “parameter definition” pane you: select the directory from which you intend to import
pictures; indicate whether to import pictures recursively; select or create a location which will
be used as default location for new plants; inform the tool about the rule you’ve been following
when naming picture files.

In the “data revision” pane you are shown a table with as many rows as the pictures you are
importing. Each row holds as much information as the tool managed to extract from the picture
name. You can review the information, correct or confirm, and indicate whether or not the row
should be imported.

3.7. Importing and Exporting Data 45

Ghini Documentation, 1.0.x

In the final “commit or rollback” pane you read the logs relative to your data import, and decide
whether to keep them (commit them to the database), or undo them (rollback the transaction).

When the Picture Collection importer creates or updates objects, it also sets a Note that you can
use for selecting the objects involved in the import, and for reviewing if needed.

46 Chapter 3. User’s Guide

Ghini Documentation, 1.0.x

3.8 Managing Users

: The Ghini users plugin is only available on PostgreSQL based databases.

The Ghini Users Plugin will allow you to create and manage the permissions of users for your
Ghini database.

You must log in to your database as a user with CREATEROLE privilege in order to manage other
users.

3.8.1 Creating Users

To create a new user. . .

3.8.2 Permissions

Ghini allows read, write and execute permissions.

3.8. Managing Users 47

Ghini Documentation, 1.0.x

48 Chapter 3. User’s Guide

CHAPTER 4

Cookbook

4.1 Contributed recipes collection

This page presents lists of use cases. If you’re looking for straight, practical information, you are
at the right place. If you prefer a thorough presentation of the software and database structure,
check the section software for botanical gardens

All material here has been contributed by gardens using the software and sharing their experi-
ences back to the user community.

The authors of the software wish to thank all dearly.

4.1.1 Quito Botanical Garden

At the JBQ, Quito Botanical Garden, we have adopted the Ghini software in April 2015. Since
that time, we have accumulated experience with the program, and we are ourselves in need to
document it, in order to secure the knowledge to the institution. We are happy to share it.

Technical

• We work on GNU/Linux, a platform that many users don’t master, and our database is
inside of a remote database management system. This implies steps that are not obvious
to the casual end user.

How to start a program

49

goal.html#botanic-garden-software

Ghini Documentation, 1.0.x

To start a program given its name, hit the key next to Alt, or click on ,
then start typing the name of the program, in our case “Ghini” or just click on

the program symbol , appearing near the left margin of your display.

Database server
We chose for a centralised PostgreSQL database server. This way we are pro-
tected from concurrent conflicting changes, and all changes are simultaneously
available on all ghini clients. We did need to outsource database server man-
agement.

adding a new user
Ghini keeps track of the user performing all sort of edits to the database, and
at the garden, apart from the stable users, we have all sorts of temporary users
writing to the database, that we decided we would let Ghini help us keep track
of database events.

Since we work using PostgreSQL, the users that Ghini stores in the database
history are the database users, not the system users.

Each user knows their own password, and only knows that one. Our super-
user, responsible for the database content, also has the bauble fictional user
password, which we only only use to create other users.

We do not use account names like voluntario, because such accounts do not
help us associate the name to the person.

— adding a new system user (linux/osx)
Adding a system user is not strictly necessary, as ghini does not use it in the
logs, however, adding a system user allows for separation of preferences, con-
figured connections, search history. On some of our systems we have a single
shared account with several configured connections, on other systems we have
one account per user.

On systems with one account per user, our users have a single configured
connection, and we hold the database password in the /home/<account>/
.pgpass file. This file is only readable for the <account> owner.

On systems with a shared account, the user must select their own connection
and type the corresponding password.

These are the steps to add system users:

50 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

sudo -k; sudo adduser test
sudo adduser test adm; sudo adduser test sudo
sudo adduser test sambashare; sudo adduser test ghini

— adding a new database user
Ghini has a very minimal interface to user management, it only works with
postgresql and it very much lacks maintainance. We have opened issues that
will allow us use it, for the time being we use the create-role.sh script:

#!/bin/bash
USER=$1
PASSWD=$2
shift 2
cat <<EOF | psql bauble -U bauble $@
create role $USER with login password '$PASSWD';
alter role $USER with login password '$PASSWD';
grant all privileges on all tables in schema public to
→˓$USER;
grant all privileges on all sequences in schema public to
→˓$USER;
grant all privileges on all functions in schema public to
→˓$USER;
EOF

The redundant alter role following the create role lets us apply the
same script also for correcting existing accounts.

Our ghini database is called bauble, and bauble is also the name of our
database super user, the only user with CREATEROLE privilege.

For example, the following invocation would create the user willemwith pass-
word orange, on the bauble database hosted at 192.168.5.6:

./create-role.sh willem orange -h 192.168.5.6

• Understanding when to update

Updating the system
Ubuntu updates are a lot lighter and easier than with Windows. So whenever
the system suggests an update, we let it do that. Generally, there’s no need to
wait during the update nor to reboot after it’s done.

Updating ghini

4.1. Contributed recipes collection 51

Ghini Documentation, 1.0.x

The first window presented by Ghini looks like this. Normally, you don’t need
do anything in this window, just press enter and get into the main program
screen.

Occasionally, at the top of the screen an information text will appear, telling
you that a newer version is available on-line.

The update procedure is simple, and it depends on the operating system you
use, we’re not explaining here again.

It is generally a good idea updating the software. If in doubt, contact the author,
or write to the group.

• understanding ghini initial screen

Complete screen
At the moment of writing, our initial screen looked like this:

52 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

Apart from the main application menu, Ghini offers three special interface sec-
tions with information and tools to explore the database.

Numeric overview
The table in the right half of the screen presents a summary of all the regis-
tered plants can be observed. Each entry printed in bold is a link to the query
selecting the corresponding objects.

Stored queries
The lower half of the right hand side contains a set of stored queries. While
you can edit them to your liking, our hints include selecting those accessions
that have not been identified at rank species. And one for the database history.

4.1. Contributed recipes collection 53

Ghini Documentation, 1.0.x

Query and action buttons
At the top of this screen you can find the field in which you would enter your
searches.

– With the button, in the form of a house, you can return from your
searches to the main screen.

– With the button, in the form of an arrow, you can return to your last
search.

– With the button, in the form of a gear, you can start the “Query
Builder”, which helps you compose complex searches in a simple, graph-
ical way.

• We often have volunteers who only work at the garden for a very short time. It was
with them in mind that we have developed a hyper-simplified view on the ghini database
structure.

Details
The two figures here show all that our temporary collaborators need to know.

Taxonomy & Collection Garden

• At times, the program gives error messages. , retry, or report to
the developers.

54 Chapter 4. Cookbook

goal.html#hypersimplified-view

Ghini Documentation, 1.0.x

Network problems
In order to work, the program needs a stable network connection to the database
server. It can happen: you start the program, and it can’t connect to our
database server. You would then get a rather explicit but very badly typeset
error message.

Just ignore it and try again.

Search fails with error
Sometimes and without any apparent cause, a search will not run successfully,
and a window with an error message will be displayed. In this case you only
have to try to perform the same search again.

An example of such an error message:

4.1. Contributed recipes collection 55

Ghini Documentation, 1.0.x

Search does not return something I just inserted
Accession codes starting with zero and composed of just numbers, as for exam-
ple 016489 are considered by the software as numbers, so if you don’t enclose
the search string in quotes, any leading 0 will be stripped and the value will
not be found.

Try again, but enclose your search string in single or double quotes.

Number on the label corresponding search
16489 ‘016489’

Please note: when you look for a Plant code, not an Accession, the leading zero
becomes optional, so in the above example it’s maybe easier to type 16489.1.

• A serious situation happened once, and we absolutely want to prevent it from happening
again: a user deleted a genus, with everything that was below it, species and accessions,
and synonyms.

Solving it with user permissions
We propose to have different connection profiles, associated to different
database users, each user with all needed permissions.

Full permission (BD-JBQ)
Only qualified personnel get this kind of access.

Insert and update (BD-JBQ-limitado)
We use this one for those users who come help us for a limited time, and
who did not get a complete introduction to database concepts. It is meant
to prevent costly mistakes.

Read only (BD-JBQ-lectura)
it can be shared with anyone visiting the garden

You select the connection at start-up, and the software asks you for the pass-
word corresponding to the connection you selected.

If you want to review the details of the connection, click on the next to ‘Con-
nection Details’, it will change to , and the connection window will be displayed
as one of the following:

56 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

As you can see, we are connecting to the same database server, each connection
uses the same database on the server, but with different user.

Thinking further about it
On the other hand, we are questioning if it is at all appropriate, letting any user
delete something at such high level as a family, or a genus, or, for that matters,
of anything connected to accessions in the collection.

The ghini way to question the software features, is by opening a corresponding
issue.

• When contacting the developers, they will definitely ask for technical information, or at
least to see a screen-shot. Help them help you.

Taking a screen-shot
On Linux there are three ways to create a screen-shot, all involve hitting the
‘PrtSc’ key. The most practical one is possibly hitting the ‘PrtSc’ key in com-
bination with Ctrl and Shift. This will start an interactive screen copy tool.
You select a rectangle and the area is copied in the clipboard. Paste it in the
email you’re writing, or in the chat line where the developers are trying to help
you.

Where are the logs
Ghini continuously saves a very informative log file, in the ~/.bauble/
bauble.log file. Don’t bother opening it, just send it over. It contains loads
of technical information.

Continuous unmanned alerting

4.1. Contributed recipes collection 57

https://github.com/Ghini/ghini.desktop/issues/218
https://github.com/Ghini/ghini.desktop/issues/218

Ghini Documentation, 1.0.x

An other option is to activate the sentry handler. It will notify our sentry server
of any serious situations in the software. If you registered, the developers will
know how to contact you if necessary.

To the healthy paranoid: we’re not monitoring what you’re doing, we’re mon-
itoring how our software works. You can always opt out.

You activate the Sentry handler in the :prefs page: look for the row with name
bauble.use_sentry_handler, if the value is not what you wish, double
click on the line and it will change to the other value.

Taxonomy

• Introduction

Orchidaceae taxonomic complexity
At the JBQ, we work most of all with orchids, family Orchidaceae, one of the
largest plant families, with no less than 850 genera, organized —according to
Dressler— in approximately 70 subtribes, 22 tribes, 5 subfamilies. How we
represent this information is not obvious and needs be explained.

The taxonomy of the Orchidaceae family is continuously being reviewed.
Genera get added, refused, reorganized, recognized as synonyms, some tax-
onomists prefer grouping species or genera in a new way, others split them
again and differently, botanists of different nationalities may have different
views on the matter. All this sounds very complex and specialistic, but it’s
part of our daily routine, and it can all be stored in our Ghini database.

• Identifying at rank Genus, or Family

At rank genus
Ghini-1.0 prescribes that an accession is identified at rank species, in all cases.
The current maintainer acknowledges that this is a mistake, coming from the
early Bauble days, and which Ghini-1.0 has in common with other botanic
software. Until this is fixed, we rely on established practices.

If an accession is identified at rank genus, we add a fictive species in that genus,
we don’t specify its species epithet (we don’t know that) and we add an un-
ranked epithet in the infraspecific information section, like this:

58 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

When displayed in a search result, it shows like this:

At rank family
If an accession is only identified at rank family, we need a fictive genus, to
which we can add the fictive species. Since our garden is primarily focusing
on Orchidaceae, we use the very short name Zzz for the fictive genus within
the family, like this:

The current maintainer suggests to use the prefix Zzz- and behind the prefix
to write the family name, possibly removing the trailing e. Removal of the
trailing e is useful in order not to get results that include genus names when
you as for stuff ending in aceae.

Apart from the aforementioned Zzz genus in the Orchidaceae family, we fol-
low this suggested practice, so for example our collection would include Zzz-
cactacea or Zzz-bromeliacea.

Remember: our Zzz genus is a fictive genus in the Orchidaceae family, do not
use it as unspecified genus in other families.

• Identifying at a rank that is not allowed by the software (eg: Subtribe, or Subfamily)

4.1. Contributed recipes collection 59

Ghini Documentation, 1.0.x

At rank subtribe
We sometimes can’t identify a taxon at rank genus, but we do manage to be
more precise than just “it’s an orchid”. Quite often we are able to indicate the
subtribe, this is useful when you want to produce hybrids.

The software does not let us store ranks which are intermediate between family
and genus, so we need to invent something, and this is what we do:

We insert a fictive genus, naming it as the subtribe, prefixing it with ‘Zzx-’,
like in this example:

This Zzx-Laeliinae is some genus in the Laeliinae subtribe.

In order to be able to select genera by subtribe, we also add a note to the Zzx-
Laeliinae fictive genus as well as for all real genera in that subtribe, note cate-
gory subtribus, note value the subtribe name.

This allows for queries like:

genus where notes.note=Laeliinae

We are very much looking forward to seeing that issue-9 solved!

At rank subfamily, tribe
Just as we reserved the prefix Zzx- for subtribe, we reserve the prefixes Zzy-
for tribe, Zzw- for subfamily.

In particular, the subfamily information is relevant, because there are subfam-
ilies within the Orchidaceae family which are not further separated.

• Editing the Accession identification - the Species details

Placeholder species for individual accessions
Scenario one describes the identification of a single accession, which had been
associated to a “generic”, placeholder species, something like “Zzz sp” or
“Vanda sp”;

In this case, when the plant species becomes known, we change the association
in the accession, selecting a different species.

60 Chapter 4. Cookbook

https://github.com/Bauble/bauble.classic/issues/9

Ghini Documentation, 1.0.x

We do not edit the species, because there might be totally unrelated accessions
connected to the same placeholder species.

Unknown species for multiple accessions
A different case is when we have a whole batch of accessions, all obviously the
same species, but we haven’t been able to identify it. In this case, we associate
the accessions with an incompletely specified species, something like “Zzz sp-
59”, preferably adding the taxonomist’s name, who made the association.

A species like “Vanda sp-018599” is not a placeholder species, it is a very
concrete species, which we haven’t yet identified.

In this case, when the species gets identified (and it could even be a species
nova), we directly edit the species, so all accessions that refer to it get the
change.

• A new plants is relative to a species not yet in our collection.

4.1. Contributed recipes collection 61

Ghini Documentation, 1.0.x

Last minute species
We start this from the Accession window and it’s very simple, just click on the
+ next to the species name, we get into the Species window.

• Adding a species and using online taxonomic services

Adding a new species — the plant list.
We start the obvious way: type the genus epithet, possibly select it from the
completion list, then type the species epithet, or at least your best guess.

Next to the species epithet field there’s a small button, , which connects
us to the plant list. Click on it, a message area appears at the top of the window.

Depending on the speed of your internet connection, but also on how close your
best guess is to a correct published name, the top area will change to something
like this:

Accept the hint and it will be as if you had typed the data yourself.

62 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

Reviewing a whole selection — TNRS.
This is described in the manual, it’s extremely useful, don’t forget about it.

Let the database fit the garden

• A never-ending task is reviewing what we have in the garden and have it match what we
have in the database.

Initial status and variable resources
When we adopted ghini, we imported into it all that was properly described in
a filemaker database. That database focused solely on Orchids and even so it
was far from complete. In practice, we still meet labeled plants in the garden
which have never been inserted in the database.

From time to time, we manage to get resources to review the garden, com-
paring it to the collection in the database, and the main activity is to insert
accession codes to the database, take pictures of the plant in question, and note
its location, all tasks that are described in the remainder of this section.

The small Android app ghini.pocket was added to the Ghini family while a
Ghini programmer was here in Quito. It helps us take a snapshot of the database
in our pocket while walking in the garden, but it also allows for a very swift
inventory procedure.

Inventory procedure
We start ghini.pocket, we write down the name of the location where we will
be conducting the inventory, for example (INV 1) for greenhouse 1. We enter
(type or scan if the plant has bar code or QR code) the accession code and we
look it up in ghini.pocket.

A side effect of performing the search is that ghini.pocket writes the date with
time, location and the code looked for in a text file that can later be imported

4.1. Contributed recipes collection 63

Ghini Documentation, 1.0.x

into the database.

For a greenhouse with around 1000 plants our estimates suggest you will need
two days, working at relaxed pace, from 8:00 am to 5:00 pm.

After having imported the file generated by ghini.pocket, it is easy to reveal
which plants are missing. For example: If we did the inventory of the INV3
from 4 to 5 September, this is the corresponding search:

plant where location.code = 'INV3' and not notes.note like
→˓'2017090%'

All of these plants can be marked as dead, or lost, according to garden policy.

Visualizing the need of taxonomic attention
Our protocol includes one more detail intended to visually highlight plants that
need the attention of a taxonomist.

A plant that only appears in our data base identified at family level or that
wasn’t yet the database receives a visual signal (e.g.: a wooden or plastic stick,
for ice cream or french fries), to highlight that it is not identified. In this way
the taxonomist in charge, when making a tour of the greenhouse can quickly
spot them and possibly proceed to add their identification in the database.

• Naming convention in garden locations

Details

code description
CAC-
B
x

Reserved to cactus plants next to the orchids exposition
glasshouses.

CRV: Nepenthaceae exibition
IC-xx: orquidearios de calor en el jardín (1A a 9C son lugares especificos

entre del orquideario)
IF-xx: orquidearios de frío en el jardín (1A a 5I son lugares específicos

dentro del orquideario)
INV1: invernadero 1 (calor)
INV2: invernadero 2 (frío)
INV3: invernadero 3 (calor)

64 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

• Adding an Accession for a Plant

Obviously we keep increasing our collection, with plants coming from commercial
sources, or collected from the wild, more rarely coming from expeditions to remote areas
of our country, or we receive plants which were illegally collected.

Sometimes we have to add plants to the digital collection, just because we have them phys-
ically, found in the garden, with or without its label, but without their digital counterpart.

Existing plant, found in the garden with its own label
This activity starts with a plant, which was found at a specific garden location,
an accession label, and the knowledge that the accession code is not in the
database.

For this example, let’s assume we are going to insert this information in the
database.

Accession Species Location
008440 Dendrobium ×’Emma White’ Invernadero 1 (calor)

We go straight into the Accession Editor, start typing the species name in the
corresponding field. Luckily, the species was already in the database, other-
wise we would use the Add button next to the entry field.

We select the correct species, and we fill in a couple more fields, leaving the
rest to the default values:

4.1. Contributed recipes collection 65

Ghini Documentation, 1.0.x

Accession ID Type of Material Quantity Provenance
008440 Plant 1 Unknown

After this, we continue to the Plant editor, by clicking on Add Plants.
We do not fill in the Accession’s “Intended Locations”, because we don’t
know what was the original intention when the plant was first acquired.

In the Plant Editor, we insert the Quantity and the Location. And we’re done.

The plant is now part of the database:

New accession: plant just entering the garden
This activity starts with a new Plant, just acquired from a known Source, a
plant label, and an intended Location in the garden.

We mostly do the same as for the case that a plant is found in the garden, there
are two differences: (1) we know the source of the plant; (2) acquiring this
plant was a planned action, and we intend to place it at a specific location in
the garden.

Again, we go straight into the Accession Editor, start typing the species and
we either select if from the completion list or we add it on the fly.

Accession ID Type of Material Quantity Source
033724 Plant 1 specified

After this, we continue to the Plant editor, by clicking on Add Plants.
In the Plant Editor, we insert the Quantity and the Location.

Please note that the plant may be initially placed in a greenhouse, before it
reaches its intended location in the garden.

Existing plant, found in the garden without its label
When this happens, we can’t be sure the plant had never been in the collection,
so we act as if we were re-labeling the plant. This is discussed in the next

66 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

section, but we fall back to the case of a new accession.

• When we physically associate a label to a plant, there’s always the chance that something
happens either to the plant (it may die) or to the label (it may become unreadable), or
to the association (they may be separated). We have software-aided protocols for these
events.

We find a dead plant
Whenever a plant is found dead, we collect its label and put it in a box next to
the main data insertion terminal, the box is marked “dead plants”.

Definitely at least once a week, the box is emptied and the database is updated
with this information.

Dead plants aren’t removed from the database, they stay there but get a quan-
tity zero. If the cause of death is known, this is also written in the database.

Please once again remember that a Plant is not an Accession and please re-
member we do not remove objects from the database, we just add to their his-
tory.

Insert the complete plant code (something like 012345.1, or 2017.0001.3,
and you don’t need leading zeros nor quotes), right click on the corresponding
row, and click on edit. change the quantity to 0, fill in the reason and preferably
also the date of change.

If you need add any details about the plant death, please use a note, and re-use
the note category “death_cause”.

Plants with quantity zero are shown with a different colour in the results view.
This helps distinguish them from live plants.

We find a plant without a label
We can’t be sure the plant had ever been in the collection or not. We assume it
had, and that its label was lost.

Losing a plant label is unfortunate, but it just sometimes happens. What we
do is to put a new label to the plant, and to clearly state that the label is a
replacement of an original one.

We then handle the case as if it was a new accession, plus we add a note to the
accession, category “label”, text “relabeled”.

• Keeping track of different sources of plant material

What different sources we can have

4.1. Contributed recipes collection 67

Ghini Documentation, 1.0.x

In this botanical garden, we receive plants from different types of origin. It
could be from expeditions (plants coming from nature, collected with legal
permission from MAE - Ecuadorian Environment Ministry), donated plants
mostly coming as gifts from collectors or orchid commercialization enter-
prises, purchased, or confiscated plants (usually coming from MAE raids
around the country).

If the plant comes from a wild source
The accession editor offers the option “origin” option. When a plant is trace-
able to a wild source, we can specified its specific origin. We want to comply
with ITF2, and ghini-1.0 only partly respects that standard. The ITF2 comply-
ing options are:

– Wild: Accession of wild source.

– Cultivated: Propagule(s) from a wild source plant.

– Not Wild: Accession not traceable to a wild source.

– Insufficient data

In the case of a donated plant, it is better to put detail information just as a note
in the plant accession; in the case of a plant with an unknown origin, we select
the Insufficient data option.

Using the source tab in the accession editor
In this section we can create or use a contact, our source of plant material. It
could be from an expedition to a collecting place, and in this case we would
specify the region and the expedition name, or could be the name of the person
or enterprise donating a specific batch of plants.

68 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

Once you choose or create the contact information, this section deploys more
options, here you can specify the region, where you can choose the country of
origin, and a specific location within the region, georeferencing information
(including the GPS data), habitat description collector name. For the last one,
I recommend also to write the specific date next to the collector name (eg. Luis
Baquero 11/10/2016).

Donated, bought or confiscated plants
However useful for expeditions or for donors where the main information is
geographic, this source tab is not very practical in our remaining cases: we
handle three more categories: confiscated, purchased and donated, for these
categories the options available in the source tab do not apply: too much infor-
mation and not to the point.

In these cases, we add a set of notes, according to the case.

— Donated plants
If the plant was donated by individual, we add the individual among our con-
tacts and specify it as source, then we add the notes:

category text
source-type gift
source-detail Contribución científica al JBQ

4.1. Contributed recipes collection 69

Ghini Documentation, 1.0.x

— Bought plants
If the plant was bought, we add the previous owner among our contacts and
specify it as source, then we add the notes:

category text
source-type purchase
source-detail optional, free text
factura the invoice number

— Confiscated plants
If the plant was confiscated, we add the previous owner among our contacts
and specify it as source, then we add the notes:

category text
source-type confiscated
source-detail possibly, legal details, law number . . .

• Producing or reproducing labels

Refreshing plant labels
Sometimes we refresh the labels, for example all that is in a greenhouse, or
maybe just a set of plants because their labels risk becoming unreadable.

In the first case it’s easy selecting all plants in the Location, we just type the
location name, or give the search location like <location name>.

The second case it’s a bit trickier. What we do is to create a temporary Tag,
and use it to tag all plants that were found in need for a new label.

Given the selection, we start the report tool, using the mako
accession-label.svg template. We reset its options to default val-
ues, and since we’re using a simple printer, we set the colour to black instead
of blue, which is meant for engraving.

Preparing labels for non-database plants
To prepare the batch of 72 labels, we use a mako report template, named
accession-label.svg. This template accepts parameters, this is an example
that would produce labels from 025801 all the way to 025872.

70 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

Labels come for us in two flavours: (1) either new plants just being acquired by
the garden; (2) or plants in the garden, found without a label. We distinguish
the two cases by adding a ‘ret’ extra text for relabeled plants.

We keep two boxes with labels of the two types, ready to be used.

• Our garden has two exposition greenhouses, and several warm and cold greenhouses
where we keep the largest part of our collection. Plants are moved to the exposition when
flowering and back to the “warehouse” when less interesting for the exposition. For each
plant in our collection we need to know its current locations and history of movements.

Planned action
The action starts by moving the plants around, and collecting the plant code
either on paper, or in our mobile app, if we had one.

We then go to the desktop terminal and revise all plants one by one chang-
ing their location in the database. It is important that the date of the location
change is correctly memorized, because this tells us how long a plant stays in
the exposition.

If we had a mobile app, we would just upload the info to the server and we
would be done.

4.1. Contributed recipes collection 71

Ghini Documentation, 1.0.x

Ex-post correction
While revising the garden, we find a plant at a location that is not what the
database says. We update the database information.

For example, the plant belonging to accession “012142”, species “Acineta sp”,
was found in “Invernadero 1”, while the database says it is in “ICAlm3”.

All we do is find the Plant in the database and update its information. We do
not change anything in the initial Accession information, just the current Plant
information.

We type the accession code in the search entry field, with quotes, hit enter. The
search results now shows the accession, and it tells us how many plants belong
to it. Click on the squared + in the results row, so we now also see a row for
the plant belonging to the accession.

Right click on the Plant row, the three options will show: “Edit, Split, Delete”,
select Edit, you land in the Plant Editor.

Just correct the Location field, and click on OK.

The InfoBox contains information about the last change to the object:

For plants, even more interesting, it builds a history of changes, list that in-
cludes Location changes, or Quantity changes.

• As plants enter the flowering stage, we can review their identification directly, or we take
pictures of details of the flower, hoping that a visiting specialist could help completing
the identification.

Adding pictures

72 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

We are practicing with ODK Collect, a small program running on hand-held
android devices. Ghini’s use of ODK Collect hasn’t yet frozen to a best prac-
tice. Do have a look at the corresponding issue on github.

• Regularly, we need producing reports about our collection that the Ecuadorian Environ-
ment Ministry (MAE) requires and that justify the very existence of the garden.

Producing reports
Each year the botanic garden has to submit a report (annual report of manage-
ment and maintenance of orchids collection) complying to the requirements of
the Ecuadorian Ministry of the Environment.

To this end, we start selecting the plants we have to include in the report. It
might be all acquisition in the past year:

accession where _created between |datetime|2017,1,1| and␣
→˓|datetime|2018,1,1|

or all plants within a location, or all plants belonging to a species, or just ev-
erything (but this will take time):

plant where location = 'abc'
plant where accession.species.epithet='muricata' and␣
→˓accession.species.genus.epithet='Annona'
plant like %

Having selected the database objects which we want in the report, we start the
report tool, which acts on the selection.

Searching the database

You search the database in order to edit the data further, or because you want to produce a report.
Anyway you start with typing something in the search field

and you hope to see your result in the search result view.

Search in order to edit (plant or accession)
When searching in order to edit, you want to be very specific, and select
as few objects as possible. The most fine-tuned search is the one based
on plant number: you know the code, you get one object.

If your plant is not there, the screen would look like this:

4.1. Contributed recipes collection 73

https://github.com/Ghini/ghini.desktop/issues/243

Ghini Documentation, 1.0.x

Other example, plant 007701.1 is in the database:

All fields with a darker background in the infobox on the right hand side
are hyperlinks to other objects in the database. Clicking on them will
either replace the text in the search field and execute the query, or will
simply add the object to the results.

Clicking on the accession does the latter.

We now have both Plant or Accession in the search result view and we
can now edit either or both.

Search in order to report
When searching in order to create a report, you want to be both specific
(you don’t want to report about irrelevant objects) and broad (you don’t
want to report about a single object).

Sometimes the report itself suggests the query, as for example: all plants
in greenhouse 3; or: all plants belonging to endangered species (we store

74 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

this information in a note associated to the species); or: all plants added
to the collection this year;

plant where location.code = INV3
plant where accession.species.notes.note="endangered"
plant where accession._created > |datetime|2017,1,1|

Otherwise a flexible way to achieve this is to work with Tags.

Using Tags as enhanced searching
Sometimes we have to take the same action on objects of the same type,
but we don’t manage to quickly think of a search query that would group
all that we need and exclude all we do not need.

This is one possible use of Tags. We start with a selection, we tag all
objects in the selection under a new temporary tag. Let’s say we call it
“temporary”.

We continue searching and adding objects to the temporary tag until the
tag identifies all that we need.

Finally from the Tags menu we select the one we just created (in our
example this corresponds to the search tag="temporary") and we can
invoke the report.

When we’re done with a temporary tag, there’s no point in leaving it
around, so we just delete it.

Be aware of the available search strategies
This is nicely documented, “più non dimandare” and read the docs.

4.1. Contributed recipes collection 75

searching.html

Ghini Documentation, 1.0.x

4.1.2 using ghini for a seed database

We keep getting involved in groups focusing on endagered plant seeds. They want to note down
when seeds come in, but also when they go out to people that order the seed.

In ghini, we keep speaking of ›Plants‹, ›Locations‹, while such user groups focus on ›Seeds‹
and ›Jars‹ and ›Drawers‹ and ›Boxes‹ and ›Envelopes‹. So people wonder whether ghini could
be adapted to their use case, or for directions on how to develop their own database.

Does ghini need being adapted for such a seed database?
no it doesn’t need any adaptation, it’s just that you need to read some of its terms
differently.

the taxonomy part is just taxonomy, plant species information, no need to explain
that, no way to interpret it otherwise.

›Accessions‹ and ›Plants‹, you know what an ›Accession‹ is, but since you’re con-
sistently handling ›Plants‹ still only in seed form, the Wikipedia explanation of an
accession sounds like this: it is a seed or group of seeds that are of the same taxon,
are of the same propagule type (or treatment), were received from the same source,
were received at the same time.

If you hold seeds in jars, or in other sort of containers that is able to hold hundreds
of seeds, please make sure that a jar contains seeds of just one accession, as above
described: same taxon, same treatment, same source, same time.

Each one of your ›Jars‹ of seeds is in ghini speak a ›Plant‹, and the amount of seeds
in the ›Jar‹ is the ›Plant‹ ›quantity‹. An ›Envelope‹ is just the same as a ›Jar‹: a
container of seeds from the same ›Accession‹, just presumably smaller.

A ›Box‹ (where you keep several ›Envelopes‹) or a ›Drawer‹ (where you keep sev-
eral ›Jars‹) are in ghini speak a ›Location‹.

Since a ›Jar‹ or an ›Envelope‹ contains seeds from an ›Accession‹, you will clearly
label it with its ›Accession‹ code (and trailing ›Plant‹ number). You might write the
amount of seeds, too, but this would be repeating information from the database,
and repeating information introduces an inconsistency risk factor.

How do I handle receiving a batch of seeds?

: When we receive seeds, we either collect them ourselves, or we receive it from
an other seed collector. We handle receiving them possibly on the spot, or with a
small delay. Even when handled together with several other batches of seeds we
received, each batch keeps its individuality.

We want to be later able to find back, for example, how many seeds we still have
from a specific batch, or when we last received seeds from a specific source.

76 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

As long as you put this information in the database, as long as you follow the same
convention when doing so, you will be able to write and execute such queries using
ghini.

One possibility, the one described here, is based on ›Notes‹. (Ghini does not, as yet,
implement the concept “Acquisition”. There is an issue related to the Acquisition
and Donation objects, but we haven’t quite formalized things yet.)

You surely already use codes to identify a batch of seeds entering the seed bank. Just
copy this code in a ›Note‹, category ‘received’, to each ›Accession‹ in the received
batch. This will let you select the ›Accessions‹ by the query:

accession where notes[category='received'].note='<your code>'

Use the ‘Source’ tab if you think so, it offers space for indicating an external source,
or an expedition. When receiving from an external source, you can specify the code
internal to their organization. This will be useful when requesting an extra batch.

How do I handle sending seeds?
what you physically do is to grab the desired amount of seeds of the indicated
species from a jar, put it in an envelope and send it. what you do from a point
of view of the database is exactly the same, but precisely described in a protocol:

• Use the database to identify the ›Jar‹ containing the desired amount of the
right seeds.

• remove that amount of seeds from the ›Jar‹ (decrement the quantity),

• put the seeds in an ›Envelope‹ (yes, that’s a database object).

• send the envelope (but keep it in the database).

this in short.

When I send seeds, it’s not just one bag, how does ghini help me keeping things together?
There’s two levels of keeping things together: one is while you’re preparing the
sending, and then for later reference.

While preparing the sending, we advise you use a temporary ›Tag‹ on the objects
being edited.

For later reference, you will have common ›Note‹ texts, to identify received and
sent batches.

Can you give a complete example?
Right. Quite fair. Let’s see. . .

4.1. Contributed recipes collection 77

Ghini Documentation, 1.0.x

Say you were requested to deliver 50 seeds of Parnassia palustris, 30 of Gentiana
pneumonanthe, 80 of Fritillaria meleagris, and 30 of Hypericum pulchrum.

step 1
The first step is to check the quantities you have in house, and if you do have enough,
where you have them. You do this per requested species:

accession where species.genus.epithet=Parnassia and species.
→˓epithet=palustris and sum(plants.quantity)>0

Expand in the results pane the ›Accession‹ from which you want to grab the seeds,
so you see the corresponding ›Jars‹, highlight one, and tag it with a new ›Tag‹. To
do this the first time, go through the steps, just once, of creating a new ›Tag‹. The
new tag becomes the active tag, and subsequent tagging will be speedier. I would
call the tag ›sending‹, but that’s only for ease of exposition and further completely
irrelevant.

Repeat the task for Gentiana pneumonanthe, Fritillaria meleagris, Hypericum pul-
chrum:

accession where species.genus.epithet=Gentiana and species.
→˓epithet=pneumonanthe and sum(plants.quantity)>0
accession where species.genus.epithet=Fritillaria and species.
→˓epithet=meleagris and sum(plants.quantity)>0
accession where species.genus.epithet=Hypericum and species.
→˓epithet=pulchrum and sum(plants.quantity)>0

Again highilight the accession from which you can grab seeds, and hit Ctrl-Y (this
tags the highighted row with the active tag). Don’t worry if nothing seems to happen
when you hit Ctrl-Y, this is a silent operation.

step 2
Now we prepare to go to the seeds bank, with the envelopes we want to fill.

Select the ›sending‹ ›Tag‹ from the tags menu, this will bring back in the results
pane all the tagged ›Plants‹ (›Jars‹ or ›Envelopes‹), and will tell you in which ›Lo-
cation‹ (›Drawer‹ or ›Box‹) they are to be found. Write this information on each of
your physical envelopes. Write also the ›Species‹ name, and the quantity you can
provide.

Walk now to your seeds bank and, for each of the envelopes you just prepared, open
the ›Location‹, grab the ›Plant‹, extract the correct amount of seeds, put them in
your physical envelope.

And back to the database!

step 3
If nobody used your workstation, you still have the Tag in the results pane, and it’s
expanded so you see all the individual plants you tagged.

78 Chapter 4. Cookbook

Ghini Documentation, 1.0.x

One by one, you have to ›split‹ the plant. This is a standard operation that you
activate by right-clicking on the plant.

A plant editor window comes in view, in ‘split mode’.

Splitting a plant lets you create a database image of the plant group you just phys-
ically created, eg: it lets you subtract 30 items from the Gentiana pneumonanthe
plant (group number one, that is the one in the jar), and create a new plant group
for the same accession. A good practice would be to specify as ›Location‹ for this
new plant the ‘out box’, that is, the envelope is on its way to leave the garden.

Don’t forget to delete the temporary ‘sending’ ›Tag‹.

step 4
Final step, it represents the physical step of sending the envelope, possibly together
with several other envelopes, in a single sending, which should have a code.

Just as you did when you received a batch of plants, you work with notes, this time
the category is ‘sent’, and the note text is whatever you normally do to identify a
sending. So suppose you’re doing a second sending to Pino in 2018, you add the
note to each of the newly created envelopes: category ‘sent’, text: ‘2018-pino-002’.

When you finally do send the envelopes, these stop being part of your collection.
You still want to know that they have existed, but you do not want to count them
among the seeds that are available to you.

Bring back all the plants in the sending ‘2018-pino-002’:

plant where notes[category='sent'].note = '2018-pino-002'

You now need to edit them one by one, mark the ›quantity‹ to zero, and optionally
specify the reason of the change, which would be ›given away‹, and the recipient is
already specified in the ‘sent’ ›Note‹.

This last operation could be automated, we’re thinking of it, it would become a
script, acting on a selection. Stay tuned.

4.1. Contributed recipes collection 79

Ghini Documentation, 1.0.x

80 Chapter 4. Cookbook

CHAPTER 5

Administration

5.1 Database Administration

If you are using a real DBMS to hold your botanic data, then you need do something about
database administration. While database administration is far beyond the scope of this docu-
ment, we make our users aware of it.

5.1.1 SQLite

SQLite is not what one would consider a real DBMS: each SQLite database is just in one file.
Make safety copies and you will be fine. If you don’t know where to look for your database files,
consider that, per default, bauble puts its data in the ~/.bauble/ directory.

In Windows it is somewhere in your AppData directory, most likely in AppData\Roaming\
Bauble. Do keep in mind that Windows does its best to hide the AppData directory structure
to normal users.

The fastest way to open it is with the file explorer: type %APPDATA% and hit enter.

5.1.2 MySQL

Please refer to the official documentation.

Backing up and restoring databases is described in breadth and depth starting at this page.

81

https://mariadb.com/kb/en/the-mariadb-library/documentation/
https://mariadb.com/kb/en/the-mariadb-library/backing-up-and-restoring-databases/

Ghini Documentation, 1.0.x

5.1.3 PostgreSQL

Please refer to the official documentation. A very thorough discussion of your backup options
starts at chapter 24.

5.2 Ghini Configuration

Ghini uses a configuration file to store values across invocations. This file is associated to a user
account and every user will have their own configuration file.

To review the content of the Ghini configuration file, type :prefs in the text entry area where
you normally type your searches, then hit enter.

You normally do not need tweaking the configuration file, but you can do so with a normal text
editor program. Ghini configuration file is at the default location for SQLite databases.

5.3 Reporting Errors

Should you notice anything unexpected in Ghini’s behaviour, please consider filing an issue on
the Ghini development site.

Ghini development site can be accessed via the Help menu.

82 Chapter 5. Administration

http://www.postgresql.org/docs/9.1/static/backup.html

CHAPTER 6

Ghini Family

6.1 the Ghini family

Let’s start by recalling the composition of the Ghini family, as shown in the diagram:

You have learned how to use ghini.desktop, here we introduce the other members of the family,
and their interaction.

83

Ghini Documentation, 1.0.x

6.1.1 ghini.pocket

ghini.pocket is an Android app which you can install from the play store. ghini.pocket is defi-
nitely the tool you will use most, next to ghini.desktop.

With ghini.pocket you always have the latest snapshot of your database with you.

Type an accession number, or scan its barcode or QR label, and you know:

• the identification of the plant,

• whether it already has pictures,

• when it entered the garden and

• from which source.

Apart as a quick data viewer, you can use ghini.pocket for. . .

data correction
If by your judgement, some of the information is incorrect, or if the plant
is flowering and you want to immediately take a picture and store it in
the database, you do not need take notes on paper, nor follow convolute
procedures: ghini.pocket lets you write your corrections in a log file,
take pictures associated to the plant, and you will import this information
straight into the database, with further minimal user intervention.

inventory review
The initial idea on which we based ghini.pocket is still one of its func-
tionalities: inventory review.

Using ghini.pocket, reviewing the inventory of a greenhouse, in partic-
ular if you have QR codes on plant labels, goes as fast as you can walk:
simply enter the location code of your greenhouse, reset the log, then one
by one scan the plant codes of the plants in the greenhouse. No further
data collection action is required.

When you’re done, import the log in ghini.desktop. The procedure avail-
able in ghini.desktop includes adding unknown but labelled plants in the
database, marking as lost/dead all plants that the database reports as alive
and present in the inventoried location, but were not found during the in-
ventory.

taxonomic support

84 Chapter 6. Ghini Family

https://play.google.com/store/apps/details?id=me.ghini.pocket

Ghini Documentation, 1.0.x

As a bonus, ghini.pocket contains a phonetic genus search, and a quite
complete database of botanic taxa with rank between order and genus,
including tribes, and synonymies.

check further data streams between software components.

6.1.2 ghini.web

ghini.web is a web server, written in nodejs.

Its most visible part runs at http://gardens.ghini.me and shows as a map of the world, where you
browse gardens and search their published collection.

It also serves configuration data to ghini.tour instances.

check further data streams between software components.

6.1.3 ghini.tour

ghini.tour is an Android app which you can install from the play store.

People visiting your garden will install ghini.tour on their phone or tablet, enjoy having a map
of the garden, knowing where they are, and will be able to listen to audio files that you have
placed as virtual information panels in strategic spots in your garden.

world view
at startup, you see the world and gardens. select a garden, and enter.

garden view
when viewing at garden level, you see panels. select a panel, and listen.

check further data streams between software components.

6.1. the Ghini family 85

http://gardens.ghini.me
https://play.google.com/store/apps/details?id=me.ghini.tour

Ghini Documentation, 1.0.x

6.1.4 data streams between software components

: This section contains technical information for database managers and software developers.

In the diagram showing the composition of the Ghini family, the alert reader noticed how differ-
ent arrows representing different data flows, had different colours: some are deep green, some
have a lighter tint.

Deeper green streams are constant flows of data, representing the core activity of a component,
eg: the interaction between ghini.desktop and its database server, or your internet browser and
ghini.web.

Lighter green streams are import/export actions, initiated by the user at the command panel of
ghini.desktop, or in the ghini.tour settings page.

This is the same graph, in which all import data streams have been given an identifier.

d2p: copy a snapshot of the desktop database to ghini.pocket
• export the desktop database to a pocket snapshot

• copy the snapshot to the handheld device

ghini.pocket integrates closely with ghini.desktop, and it’s not a tool for the casual

86 Chapter 6. Ghini Family

Ghini Documentation, 1.0.x

nor the external user. One task of your garden database manager is to regularly copy
an updated database snapshot to your Android device.

We advise enabling USB debugging on the device. In perspective, this will allow
ghini.desktop writing directily into the ghini.pocket device.

Export the file from ghini.desktop, call the file pocket.db, copy it to the phone:

adb -d push /tmp/pocket.db /sdcard/Android/data/me.ghini.
→˓pocket/files/

The above location is valid even if your phone does not have a memory card.

Other options include bluetooth, or whatever other way you normally use to copy
regular files into your Android device.

p2d: import from the ghini.pocket log file and pictures into the central database
even if we’re still calling it “inventory log”, ghini.pocket’s log contains more than
just inventory corrections.

• produce a log on the handheld device

• import the log in the desktop database

first of all, copy the collected information from ghini.pocket into your computer:

export DIR=/some/directory/on/your/computer
adb -d pull /sdcard/Android/data/me.ghini.pocket/files/
→˓searches.txt $DIR
adb -d pull -a /sdcard/Android/data/me.ghini.pocket/files/
→˓Pictures $DIR

then use ghini.desktop to import this information into your database.

d2w: send a selection of your garden data to ghini.web
Offer a selection of your garden data to a central ghini.web site, so online virtual
visitors can browse it. This includes plant identification and their geographic loca-
tion.

content of this flow:

• garden: coords, name, zoom level (for initial view)

• plants: coords, identification, zoom level (for visibility)

• species: binomial, phonetic approximation

g2w: add geographic non-botanic data to ghini.web

6.1. the Ghini family 87

Ghini Documentation, 1.0.x

• Write geographic information about non-botanic data (ie: point of interest within the
garden, required by ghini.tour) in the central ghini.web site.

content of this flow:

– virtual panels: coords, title, audio file

– photos: coords, title, picture

virtual panels don’t necessarily have an associated photo, photos don’t necessarily have
an associated audio file.

w2t: importing locations and POIs from ghini.web to tour
content of this flow:

• Garden (coords, name, zoom level)

• Points of Interest (coords, title, audio file, photo)

88 Chapter 6. Ghini Family

CHAPTER 7

Ghini Development

7.1 Developer’s Manual

If you ran the devinstall installation instructions, you have downloaded the sources, con-
nected to the github repository. You are in the ideal situation to start looking into the software,
understand how it works, contribute to ghini.desktop’s development.

7.1.1 Helping Ghini development

If you want to contribute to Ghini, you can do so in quite a few different ways:

• Use the software, note the things you don’t like, open an issue for each of them. A devel-
oper will react sooner than you can imagine.

• If you have an idea of what you miss in the software but can’t quite formalize it into
separate issues, you could consider hiring a professional. This is the best way to make
sure that something happens quickly on Ghini. Do make sure the developer opens issues
and publishes their contribution on github.

• Translate! Any help with translations will be welcome, so please do! you can do this
without installing anything on your computer, just using the on-line translation service
offered by http://hosted.weblate.org/

• fork the respository, choose an issue, solve it, open a pull request. See the bug solving
workflow below.

If you haven’t yet installed Ghini, and want to have a look at its code history, you can open
our github project page and see all that has been going on around Ghini since its inception as
Bauble, back in the year 2004.

89

http://github.com/Ghini/ghini.desktop/issues/new
http://hosted.weblate.org/
http://github.com/Ghini/ghini.desktop

Ghini Documentation, 1.0.x

If you install the software according to the devinstall instructions, you have the whole history
in your local git clone.

7.1.2 Software source, versions, branches

If you want a particular version of Ghini, we release and maintain versions as branches. You
should git checkout the branch corresponding to the version of your choice.

production line

Branch names for Ghini stable (production) versions are of the form ghini-x.y (eg: ghini-1.0);
branch names where Ghini testing versions are published are of the form ghini-x.y-dev (eg:
ghini-1.0-dev).

7.1.3 Development Workflow

Our workflow is to continuously commit to the testing branch, to often push them to github, to
let travis-ci and coveralls.io check the quality of the pushed testing branches, finally, from time
to time, to merge the testing branch into the corresponding release.

When working at larger issues, which seem to take longer than a couple of days, I might open a
branch associated to the issue. I don’t do this very often.

larger issues

When facing a single larger issue, create a branch tag at the tip of a main development line (e.g.:
ghini-1.0-dev), and follow the workflow described at

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

in short:

git up
git checkout -b issue-xxxx
git push origin issue-xxxx

Work on the new temporary branch. When ready, go to github, merge the branch with the
main development line from which you branched, solve conflicts where necessary, delete the
temporary branch.

When ready for publication, merge the development line into the corresponding production line.

90 Chapter 7. Ghini Development

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Ghini Documentation, 1.0.x

7.1.4 Updating the set of translatable strings

From time to time, during the process of updating the software, you will be adding or modifying
strings in the python sources, in the documentation, in the glade sources. Most of our strings
are translatable, and are offered to weblate for people to contribute, in the form of several .po
files.

A po is mostly composed of pairs of text portions, original and translation, and is specific to
a target language. When a translator adds a translation on weblate, this reaches our repository
on github. When a programmer adds a string to the software, this reaches weblate as “to be
translated”.

Weblate hosts the Ghini project. Within this project we have components, each of which cor-
responds to a branch of a repository on github. Each component accepts translations in several
languages.

component repository branch
Desktop 1.0 ghini.desktop ghini-1.0-dev
Desktop 3.1 ghini.desktop ghini-3.1-dev
Documentation 1.0 ghini.desktop-docs.i18n ghini-1.0-dev
Documentation 3.1 ghini.desktop-docs.i18n ghini-3.1-dev
Web 1.2 ghini.web master
Pocket ghini.pocket master
Tour ghini.tour master

To update the po files relative to the software, you set the working directory to the root of your
checkout of ghini.desktop, and you run the script:

./scripts/i18n.sh

To update the po files relative to the documentation, you set the working directory to the root of
your checkout of ghini.desktop-docs.i18n, and you run the script:

./doc/runme.sh

When you run either of the above mentioned scripts, chances are you need to commit all po files
in the project. You may want to review the changes before committing them to the respository.
This is most important when you perform a marginal correction to a string, like removing a
typo.

Something that happens: running into a conflict. Solving conflicts is not difficult once you know
how to do that. First of all, add weblate as remote:

git remote add weblate-doc10 https://hosted.weblate.org/git/ghini/
→˓documentation-10/

Then make sure we are in the correct repository, on the correct branch, update the remote, merge
with it:

7.1. Developer’s Manual 91

https://hosted.weblate.org/projects/ghini/

Ghini Documentation, 1.0.x

git checkout ghini-1.0-dev
git remote update
git merge weblate-doc10/ghini-1.0-dev

Our documentation on readthedocs has an original English version, and several translations. We
just follow the description of localisation, there’s nothing that we invented ourselves here.

Readthedocs checks the project’s Language setting, and invokes sphinx-intl to produce the
formatted documentation in the target language. With the default configuration —which we
did not alter— sphinx-intl expects one po file per source document, named as the source
document, and that they all reside in the directory local/$(LANG)/LC_MESSAGES/.

On the other hand, Weblate (and ourselves) prefers a single po file per language, and keeps them
all in the same /po directory, just as we do for the software project: /po/$(LANG).po.

In order not to repeat information, and to let both systems work their natural way, we have two
sets of symbolic links (git honors them).

To summarise: when a file in the documentation is updated, the runme.sh script will:

1. copy the rst files from the software to the documentation;

2. create a new pot file for each of the documentation files;

3. merge all pot files into one doc.pot;

4. use the updated doc.pot to update all doc.po files (one per language);

5. create all symbolic links:

a. those expected by sphinx-intl in /local/$(LANG)/LC_MESSAGES/

b. those used by weblate in /po/$(LANG).po

We could definitely write the above in a Makefile, or even better include it in /doc/Makefile.
Who knows, maybe we will do that.

7.1.5 Producing the docs locally

The above description is about how we help external sites produce our documentation so that it
is online for all to see. But what if you want to have the documentation locally, for example if
you want to edit and review before pushing your commits to the cloud?

In order to run sphinx locally, you need to install it within the same virtual environment as ghini,
and to install it there, you need to have a sphinx version whose dependencies don not conflict
with ghini.desktop’s dependecies.

What we do to keep this in order?

We state this extra dependency in the setup.py file, as an extras_require entry. Create and
activate the virtual environment, then run easy_install ghini.desktop[docs]. This gets
you the sphinx version as declared in the setup.py file.

If all you want is the html documentation built locally, run ./setup.py install docs. For
more options, enter the doc directory and run make.

92 Chapter 7. Ghini Development

https://readthedocs.org/projects/ghini/
http://docs.readthedocs.io/en/latest/localization.html

Ghini Documentation, 1.0.x

7.1.6 Which way do the translated strings reach our users?

A new translator asked the question, adding: »Is this an automated process from Weblate –>
GIT –> Ghini Desktop installed on users computers, or does this require manual steps?

The aswer is that the whole interaction is quite complex, and it depends on the component.

When you install ghini.desktop or one of the Android apps, the installation doesn’t assume a
specific run-time language: a user can change their language configuration any time. So what we
do is to install the software in English together with a translation table from English to whatever
else.

At run-time the GUI libraries (Android or GTK) know where to look for the translation strings.
These translation tables are generated during the installation or upgrade process, based on the
strings you see on Weblate.

The path followed by translations is: You edit strings on Weblate, Weblate keeps accumulating
them until you are done, or you don’t interact with Weblate for a longer while; Weblate pushes
the strings to github, directly into the development line ghini-1.0-dev; I see them and I might
blindly trust or prefer to review them, maybe I look them up in wikipedia or get them translated
back to Italian, Spanish or English by some automatic translation service; sometimes I need
to solve conflicts arising because of changed context, not too often fortunately. As said, this
lands in the development line ghini-1.0-dev, which I regularly publish to the production line
ghini-1.0, and this is the moment when the new translations finally make it to the distributed
software.

Users will notice a new version available warning and can decide to ignore it, or to update.

For ghini.pocket, it is similar, but the notification is handled by the Android system. We
publish on the Play Store, and depending on your settings, your phone will update the software
automatically, or only notify you, or do nothing. It depends on how you configured automatic
updates.

For ghini.web, we haven’t yet defined how to distribute it.

For ghini’s documentation, it’s completely automatic, and all is handled by readthedocs.org.

7.1.7 Adding missing unit tests

If you are interested contributing to development of Ghini, a good way to do so would be by
helping us finding and writing the missing unit tests.

A well tested function is one whose behaviour you cannot change without breaking at least one
unit test.

We all agree that in theory theory and practice match perfectly and that one first writes the tests,
then implements the function. In practice, however, practice does not match theory and we have
been writing tests after writing and even publishing the functions.

This section describes the process of adding unit tests for bauble.plugins.plants.family.
remove_callback.

7.1. Developer’s Manual 93

Ghini Documentation, 1.0.x

What to test

First of all, open the coverage report index, and choose a file with low coverage.

For this example, run in October 2015, we landed on bauble.plugins.plants.family, at
33%.

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ffamily.
py

The first two functions which need tests, edit_callback and add_genera_callback, in-
clude creation and activation of an object relying on a custom dialog box. We should really first
write unit tests for that class, then come back here.

The next function, remove_callback, also activates a couple of dialog and message boxes, but
in the form of invoking a function requesting user input via yes-no-ok boxes. These functions
we can easily replace with a function mocking the behaviour.

how to test

So, having decided what to describe in unit test, we look at the code and we see it needs dis-
criminate a couple of cases:

parameter correctness
• the list of families has no elements.

• the list of families has more than one element.

• the list of families has exactly one element.

cascade
• the family has no genera

• the family has one or more genera

confirm
• the user confirms deletion

• the user does not confirm deletion

deleting
• all goes well when deleting the family

• there is some error while deleting the family

I decide I will only focus on the cascade and the confirm aspects. Two binary questions: 4
cases.

94 Chapter 7. Ghini Development

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ffamily.py
https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ffamily.py

Ghini Documentation, 1.0.x

where to put the tests

Locate the test script and choose the class where to put the extra unit tests.

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ftest.
py#L273

what about skipped tests
The FamilyTests class contains a skipped test, implementing it will be quite a bit
of work because we need rewrite the FamilyEditorPresenter, separate it from the
FamilyEditorView and reconsider what to do with the FamilyEditor class, which I
think should be removed and replaced with a single function.

writing the tests

After the last test in the FamilyTests class, I add the four cases I want to describe, and I make
sure they fail, and since I’m lazy, I write the most compact code I know for generating an error:

def test_remove_callback_no_genera_no_confirm(self):
1/0

def test_remove_callback_no_genera_confirm(self):
1/0

def test_remove_callback_with_genera_no_confirm(self):
1/0

def test_remove_callback_with_genera_confirm(self):
1/0

One test, step by step

Let’s start with the first test case.

When writing tests, I generally follow the pattern:

• T0 (initial condition),

• action,

• T1 (testing the result of the action given the initial conditions)

what’s in a name — unit tests
There’s a reason why unit tests are called unit tests. Please never test two actions in
one test.

7.1. Developer’s Manual 95

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ftest.py#L273
https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ftest.py#L273

Ghini Documentation, 1.0.x

So let’s describe T0 for the first test, a database holding a family without genera:

def test_remove_callback_no_genera_no_confirm(self):
f5 = Family(family=u'Arecaceae')
self.session.add(f5)
self.session.flush()

We do not want the function being tested to invoke the interactive utils.yes_no_dialog
function, we want remove_callback to invoke a non-interactive replacement function. We
achieve this simply by making utils.yes_no_dialog point to a lambda expression which,
like the original interactive function, accepts one parameter and returns a boolean. In this case:
False:

def test_remove_callback_no_genera_no_confirm(self):
T_0
f5 = Family(family=u'Arecaceae')
self.session.add(f5)
self.session.flush()

action
utils.yes_no_dialog = lambda x: False
from bauble.plugins.plants.family import remove_callback
remove_callback(f5)

Next we test the result.

Well, we don’t just want to test whether or not the object Arecaceae was deleted, we also
should test the value returned by remove_callback, and whether yes_no_dialog and
message_details_dialog were invoked or not.

A lambda expression is not enough for this. We do something apparently more complex, which
will make life a lot easier.

Let’s first define a rather generic function:

def mockfunc(msg=None, name=None, caller=None, result=None):
caller.invoked.append((name, msg))
return result

and we grab partial from the functools standard module, to partially apply the above
mockfunc, leaving only msg unspecified, and use this partial application, which is a function
accepting one parameter and returning a value, to replace the two functions in utils. The test
function now looks like this:

def test_remove_callback_no_genera_no_confirm(self):
T_0
f5 = Family(family=u'Arecaceae')
self.session.add(f5)

()

96 Chapter 7. Ghini Development

Ghini Documentation, 1.0.x

()
self.session.flush()
self.invoked = []

action
utils.yes_no_dialog = partial(

mockfunc, name='yes_no_dialog', caller=self, result=False)
utils.message_details_dialog = partial(

mockfunc, name='message_details_dialog', caller=self)
from bauble.plugins.plants.family import remove_callback
result = remove_callback([f5])
self.session.flush()

The test section checks that message_details_dialog was not invoked, that
yes_no_dialog was invoked, with the correct message parameter, that Arecaceae is
still there:

effect
self.assertFalse('message_details_dialog' in

[f for (f, m) in self.invoked])
self.assertTrue(('yes_no_dialog', u'Are you sure you want to '

'remove the family <i>Arecaceae</i>?')
in self.invoked)

self.assertEquals(result, None)
q = self.session.query(Family).filter_by(family=u"Arecaceae")
matching = q.all()
self.assertEquals(matching, [f5])

And so on

there are two kinds of people, those who complete what they start, and so on

Next test is almost the same, with the difference that the utils.yes_no_dialog should return
True (this we achieve by specifying result=True in the partial application of the generic
mockfunc).

With this action, the value returned by remove_callback should be True, and there should be
no Arecaceae Family in the database any more:

def test_remove_callback_no_genera_confirm(self):
T_0
f5 = Family(family=u'Arecaceae')
self.session.add(f5)
self.session.flush()
self.invoked = []

action
()

7.1. Developer’s Manual 97

Ghini Documentation, 1.0.x

()
utils.yes_no_dialog = partial(

mockfunc, name='yes_no_dialog', caller=self, result=True)
utils.message_details_dialog = partial(

mockfunc, name='message_details_dialog', caller=self)
from bauble.plugins.plants.family import remove_callback
result = remove_callback([f5])
self.session.flush()

effect
self.assertFalse('message_details_dialog' in

[f for (f, m) in self.invoked])
self.assertTrue(('yes_no_dialog', u'Are you sure you want to '

'remove the family <i>Arecaceae</i>?')
in self.invoked)

self.assertEquals(result, True)
q = self.session.query(Family).filter_by(family=u"Arecaceae")
matching = q.all()
self.assertEquals(matching, [])

have a look at commit 734f5bb9feffc2f4bd22578fcee1802c8682ca83 for the other two test func-
tions.

Testing logging

Our bauble.test.BaubleTestCase objects use handlers of the class bauble.test.
MockLoggingHandler. Every time an individual unit test is started, the setUp method will
create a new handler and associate it to the root logger. The tearDown method takes care of
removing it.

You can check for presence of specific logging messages in self.handler.messages.
messages is a dictionary, initially empty, with two levels of indexation. First the name of the
logger issuing the logging record, then the name of the level of the logging record. Keys are
created when needed. Values hold lists of messages, formatted according to whatever formatter
you associate to the handler, defaulting to logging.Formatter("%(message)s").

You can explicitly empty the collected messages by invoking self.handler.clear().

Putting all together

From time to time you want to activate the test class you’re working at:

nosetests bauble/plugins/plants/test.py:FamilyTests

And at the end of the process you want to update the statistics:

./scripts/update-coverage.sh

98 Chapter 7. Ghini Development

Ghini Documentation, 1.0.x

7.1.8 Structure of user interface

The user interface is built according to the Model — View — Presenter architectural pattern.
For much of the interface, Model is a SQLAlchemy database object, but we also have interface
elements where there is no corresponding database model. In general:

• The View is described as part of a glade file. This should include the signal-callback and
ListStore-TreeView associations. Just reuse the base class GenericEditorView defined
in bauble.editor. When you create your instance of this generic class, pass it the
glade file name and the root widget name, then hand this instance over to the presenter
constructor.

In the glade file, in the action-widgets section closing your GtkDialog object descrip-
tion, make sure every action-widget element has a valid response value. Use valid
GtkResponseType values, for example:

– GTK_RESPONSE_OK, -5

– GTK_RESPONSE_CANCEL, -6

– GTK_RESPONSE_YES, -8

– GTK_RESPONSE_NO, -9

There is no easy way to unit test a subclassed view, so please don’t subclass views, there’s
really no need to.

In the glade file, every input widget should define which handler is activated on which
signal. The generic Presenter class offers generic callbacks which cover the most common
cases.

– GtkEntry (one-line text entry) will handle the changed signal, with either
on_text_entry_changed or on_unique_text_entry_changed.

– GtkTextView: associate it to a GtkTextBuffer. To handle the changed signal
on the GtkTextBuffer, we have to define a handler which invokes the generic
on_textbuffer_changed, the only role for this function is to pass our generic han-
dler the name of the model attribute that receives the change. This is a workaroud
for an unresolved bug in GTK.

– GtkComboBox with translated texts can’t be easily handled from the glade file, so
we don’t even try. Use the init_translatable_combo method of the generic
GenericEditorView class, but please invoke it from the presenter.

• The Model is just an object with known attributes. In this interaction, the model is just a
passive data container, it does nothing more than to let the presenter modify it.

• The subclassed Presenter defines and implements:

– widget_to_field_map, a dictionary associating widget names to name of model
attributes,

– view_accept_buttons, the list of widget names which, if activated by the user,
mean that the view should be closed,

– all needed callbacks,

7.1. Developer’s Manual 99

http://gtk.php.net/manual/en/html/gtk/gtk.enum.responsetype.html
http://gtk.php.net/manual/en/html/gtk/gtk.enum.responsetype.html
http://stackoverflow.com/questions/32106765/

Ghini Documentation, 1.0.x

– optionally, it plays the model role, too.

The presenter continuously updates the model according to changes in the view. If the
model corresponds to a database object, the presenter commits all model updates to the
database when the view is closed successfully, or rolls them back if the view is canceled.
(this behaviour is influenced by the parameter do_commit)

If the model is something else, then the presenter will do something else.

: A well behaved presenter uses the view api to query the values inserted by the user or
to forcibly set widget statuses. Please do not learn from the practice of our misbehaving
presenters, some of which directly handle fields of view.widgets. By doing so, these
presenters prevents us from writing unit tests.

The base class for the presenter, GenericEditorPresenter defined in bauble.editor, im-
plements many useful generic callbacks. There is a MockView class, that you can use when
writing tests for your presenters.

Examples

Contact and ContactPresenter are implemented following the above lines. The view is
defined in the contact.glade file.

A good example of Presenter/View pattern (no model) is given by the connection manager.

We use the same architectural pattern for non-database interaction, by setting the presenter also
as model. We do this, for example, for the JSON export dialog box. The following command
will give you a list of GenericEditorView instantiations:

grep -nHr -e GenericEditorView\(bauble

7.1.9 Extending Ghini with Plugins

Nearly everything about Ghini is extensible through plugins. Plugins can create tables, define
custom searchs, add menu items, create custom commands and more.

To create a new plugin you must extend the bauble.pluginmgr.Plugin class.

The Tag plugin is a good minimal example, even if the TagItemGUI falls outside the Model-
View-Presenter architectural pattern.

100 Chapter 7. Ghini Development

Ghini Documentation, 1.0.x

7.1.10 Plugins structure

Ghini is a framework for handling collections, and is distributed along with a set of plugins
making Ghini a botanical collection manager. But Ghini stays a framework and you could in
theory remove all plugins we distribute and write your own, or write your own plugins that
extend or complete the current Ghini behaviour.

Once you have selected and opened a database connection, you land in the Search window. The
Search window is an interaction between two objects: SearchPresenter (SP) and SearchView
(SV).

SV is what you see, SP holds the program status and handles the requests you express through
SV. Handling these requests affect the content of SV and the program status in SP.

The search results shown in the largest part of SV are rows, objects that are instances of classes
registered in a plugin.

Each of these classes must implement an amount of functions in order to properly behave within
the Ghini framework. The Ghini framework reserves space to pluggable classes.

SP knows of all registered (plugged in) classes, they are stored in a dictionary, associating a
class to its plugin implementation. SV has a slot (a gtk.Box) where you can add elements. At
any time, at most only one element in the slot is visible.

A plugin defines one or more plugin classes. A plugin class plays the role of a partial presenter
(pP - plugin presenter) as it implement the callbacks needed by the associated partial view fitting
in the slot (pV - plugin view), and the MVP pattern is completed by the parent presenter (SP),
again acting as model. To summarize and complete:

• SP acts as model,

• the pV partial view is defined in a glade file.

• the callbacks implemented by pP are referenced by the glade file.

• a context menu for the SP row,

• a children property.

when you register a plugin class, the SP:

• adds the pV in the slot and makes it non-visible.

• adds an instance of pP in the registered plugin classes.

• tells the pP that the SP is the model.

• connects all callbacks from pV to pP.

when an element in pV triggers an action in pP, the pP can forward the action to SP and can
request SP that it updates the model and refreshes the view.

When the user selects a row in SP, SP hides everything in the pluggable slot and shows only
the single pV relative to the type of the selected row, and asks the pP to refresh the pV with
whatever is relative to the selected row.

7.1. Developer’s Manual 101

Ghini Documentation, 1.0.x

Apart from setting the visibility of the various pV, nothing needs be disabled nor removed: an
invisible pV cannot trigger events!

7.1.11 bug solving workflow

normal development workflow

• while using the software, you notice a problem, or you get an idea of something that could
be better, you think about it good enough in order to have a very clear idea of what it really
is, that you noticed. you open an issue and describe the problem. someone might react
with hints.

• you open the issues site and choose one you want to tackle.

• assign the issue to yourself, this way you are informing the world that you have the inten-
tion to work at it. someone might react with hints.

• optionally fork the repository in your account and preferably create a branch, clearly as-
sociated to the issue.

• write unit tests and commit them to your branch (please do not push failing unit tests to
github, run nosetests locally first).

• write more unit tests (ideally, the tests form the complete description of the feature you
are adding or correcting).

• make sure the feature you are adding or correcting is really completely described by the
unit tests you wrote.

• make sure your unit tests are atomic, that is, that you test variations on changes along one
single variable. do not give complex input to unit tests or tests that do not fit on one screen
(25 lines of code).

• write the code that makes your tests succeed.

• update the i18n files (run ./scripts/i18n.sh).

• whenever possible, translate the new strings you put in code or glade files.

• when you change strings, please make sure that old translations get re-used.

• commit your changes.

• push to github.

• open a pull request.

102 Chapter 7. Ghini Development

Ghini Documentation, 1.0.x

publishing to production

please use the publish.sh script, in the scritps directory. This one takes care of every
single step, and produces recognizable commit comments, it publishes the release on pypi, and
in perspective it will contain all steps for producing a deb file, and a windows executable.

you can also do this by hand:

• open the pull request page using as base a production line ghini-x.y, compared to
ghini-x.y-dev.

• make sure a bump commit is included in the differences.

• it should be possible to automatically merge the branches.

• create the new pull request, call it as “publish to the production line”.

• you possibly need wait for travis-ci to perform the checks.

• merge the changes.

don’t forget to tell the world about the new release: on facebook, the google group, in any
relevant linkedin group, and on our web page.

your own fork

If you want to keep your own fork of the project, keep in mind this is full force work in progress,
so staying up to date will require some effort from your side.

The best way to keep your own fork is to focus on some specific issue, work relatively quickly,
often open pull requests for your work, make sure that you get it accepted. Just follow Ghini’s
coding style, write unit tests, concise and abundant, and there should be no problem in having
your work included in Ghini’s upstream.

If your fork got out of sync with Ghini’s upstream: read, understand, follow the github guides
configuring a remote for a fork and syncing a fork.

closing step

• review this workflow. consider this as a guideline, to yourself and to your colleagues.
please help make it better and matching the practice.

7.1.12 Distributing ghini.desktop

Python Package Index - PyPI

This is not much mentioned, but we keep ghini.desktop on the Python Package Index, so you
could install it by no more than:

pip install ghini.desktop

7.1. Developer’s Manual 103

https://www.facebook.com/bauble.thesoftware/
https://groups.google.com/forum/#!forum/bauble
http://ghini.github.io/
https://help.github.com/articles/configuring-a-remote-for-a-fork/
https://help.github.com/articles/syncing-a-fork/

Ghini Documentation, 1.0.x

There are a couple packages that can’t be installed with pip, but otherwise that’s really all you
need to type, and it’s platform independent.

Publishing on PyPI is a standard setup command:

python setup.py sdist --formats zip upload -r pypi

Windows

For building a Windows installer or executable you need a running Windows system. The meth-
ods described here has been used successfully on Windows 7, 8 and 10. Windows Vista should
also work but has not been tested.

If you are on GNU/Linux, or on OSX, you are not interested in the remainder of this section.
None of Ghini’s contributors knows how to produce a Windows installer without having a Win-
dows system.

The goal of the present instructions is to help you produce a Windows installer, that is a single
executable that you can run on any Windows workstation and that will install a specific version
of ghini.desktop. This is achieved with the NSIS script-driven installer authoring tool.

As a side product of the installer production, you will have a massive but relocatable directory,
which you can copy to a USB drive and which will let you use the software without needing an
installation.

The files and directories relevant to this section:

• scripts/build-win.bat — the single batch script to run.

• setup.py — implements the NSIS and py2exe commands.

• scripts/build-multiuser.nsi — the nsis script, used by the above.

• nsis/ — contains redistributable NSIS files, put here for conveniency.

• ghini-runtime/ — built by py2exe, used by nsis.

• dist/ — receives the executable installation file.

Most steps are automated in the build-win.bat script. Installation of a few tools needs to be
done manually:

1. Download and install Git, Python 2.7 and PyGTK.

This is outlined in the devinstall-based installation instructions.

2. Download and install NSIS v3.

3. A reboot is recommended.

4. Clone the ghini.desktop repository.

Use your own fork if you plan contributing patches, or the organization’s repository
https://github.com/Ghini/ghini.desktop.git if you only wish to follow devel-
opment.

104 Chapter 7. Ghini Development

http://nsis.sourceforge.net/Download

Ghini Documentation, 1.0.x

Clone the repository from GitHub to wherever you want to keep it, and checkout a branch.
Replace <path-to-keep-ghini> with the path of your choice, e.g. Local\github\
Ghini\. Production branch ghini-1.0 is recommended as used in the example.

To do this, open a command prompt and type these commands:

cd <path-to-keep-ghini>
git clone <ghini.desktop repository URL>
cd ghini.desktop
git checkout ghini-1.0

The result of the above is a complete development environment, on Windows, with NSIS. Use
it to follow development, or to propose your pull requests, and to build Windows installers.

All subsequent steps are automated in the scripts\build_win.bat script. Run it, and after
a couple of minutes you should have a new dist\ghini.desktop-<version>-setup.exe
file, and a working, complete relocatable directory named ghini-runtime.

Read the rest if you need details about the way the script works.

The build_win.bat script
A batch file is available that can complete the last few steps. To use it use this
command:

scripts\build_win.bat

build_win.bat accepts 2 arguments:

1. /e — executable only.

Produce an executable only, skipping the extra step of building an installer,
and will copy win_gtk.bat into place.

2. venv_path — A path to the location for the virtual environment to use.

Defaults to "%HOMEDRIVE%%HOMEPATH%"\.virtualenvs\
%CHECKOUT%-exe, where CHECKOUT corresponds to the name of the
branch you checked out.

If you want to produce an executable only and use a virtual environment in a folder
beside where you have ghini.desktop, you could execute scripts\build_win.
bat /e ..\ghi2exe

py2exe will not work with eggs
Building a Windows executable with py2exe requires packages not be installed as
eggs. There are several methods to accomplish this, including:

• Install using pip. The easiest method is to install into a virtual environment
that doesn’t currently have any modules installed as eggs using pip install
. as described below. If you do wish to install over the top of an install with

7.1. Developer’s Manual 105

Ghini Documentation, 1.0.x

eggs (e.g. the environment created by devinstall.bat) you can try pip
install -I . but your mileage may vary.

• By adding:

[easy_install]
zip_ok = False

to setup.cfg (or similarly zip_safe = False to setuptools.setup() in
setup.py) you can use python setup.py install but you will need to
download and install Microsoft Visual C++ Compiler for Python 2.7 to get
any of the C extensions and will need a fresh virtual environment with no
dependent packages installed as eggs.

The included build-win script uses the pip method.

installing virtualenv and working with environments
Install virtualenv, create a virtual environment and activate it.

With only Python 2.7 on your system (where <path-to-venv> is the path to where
you wish to keep the virtual environment) use:

pip install virtualenv
virtualenv --system-site-packages <path-to-venv>
call <path-to-venv>\Scripts\activate.bat

On systems where Python 3 is also installed you may need to either call pip and vir-
tualenv with absolute paths, e.g. C:\Python27\Scripts\pip or use the Python
launcher e.g. py -2.7 -m pip (run python --version first to check. If you get
anything other than version 2.7 you’ll need to use one of these methods.)

Populate the virtual environment
Install dependencies and ghini.desktop into the virtual environment:

pip install psycopg2 Pygments py2exe_py2
pip install .

Compile for Windows
Build the executable:

python setup.py py2exe

The ghini-runtime folder will now contain a full working copy of the software
in a frozen, self contained state.

106 Chapter 7. Ghini Development

http://aka.ms/vcpython27

Ghini Documentation, 1.0.x

This folder is what is packaged by NSIS.

This same folder can also be transferred however you like and will work in place.
(e.g. placed on a USB flash drive for demonstration purposes or copied manually to
C:\Program Fileswith a shortcut created on the desktop). To start ghini.desktop
double click ghini.exe in explorer (or create a shortcut to it).

Fixing paths to GTK components.
If you run the relocatable compiled program, unpackaged, you might occasionally
have trouble with the GUI not displaying correctly.

Should this happen, you need to set up paths to the GTK components correctly. You
can do this by running the win_gtk.bat, from the ghini-runtime folder.

You will only need to run this once each time the location of the folder changes.
Thereafter ghini.exe will run as expected.

Finally, invoke NSIS
Build the installer:

python setup.py nsis

This should leave a file named ghini.desktop-<version>-setup.exe in the
dist folder. This is your Windows installer.

about the installer
• Capable of single user or global installs.

• At this point in time ghini.desktop installed this way will not check or or notify you of
any updated version. You will need to check yourself.

• Capable of downloading and installing optional extra components:

– Apache FOP - If you want to use xslt report templates install FOP. FOP requires
Java Runtime. If you do not currently have it installed the installer will let you know
and offer to open the Oracle web site for you to download and install it from.

– MS Visual C runtime - You most likely don’t need this but if you have any trouble
getting ghini.desktop to run try installing the MS Visual C runtime (e.g. rerun the
installer and select this component only).

• Can be run silently from the commandline (e.g. for remote deployment) with the following
arguments:

– /S for silent;

– /AllUser (when run as administrator) or /CurrentUser

7.1. Developer’s Manual 107

Ghini Documentation, 1.0.x

– /C=[gFC] to specify components where:

g = Deselect the main ghini.desktop component (useful for adding optional compo-
nent after an initial install)

F = select Apache FOP

C = select MS Visual C runtime

Debian

Between 2009 and 2010 someone packaged the then already obsolete Bauble 0.9.7 for Debian,
and the package was included in Ubuntu. That version is still being distributed, regardless being
it impossible to install.

Only recently has Mario Frasca produced a new bauble debian package, for the latest
bauble.classic version 1.0.56, and proposed for inclusion in Debian. View it on mentors. This
version depends on fibra, a package that was never added to Debian and which Mario also has
packaged and proposed for inclusion in Debian. Mario has been trying to activate some Debian
Developer, to take action. There’s not much more we can do, other than wait for a sponsor, and
hoping the package will eventually get all the way to Ubuntu.

Once we get in contact with a Debian Sponsor who will review what we publish on mentors,
then we will be definitely expected to keep updating the debian package for ghini.desktop
and fibra.

I am not going to explain in a few words the content of several books on Debian packaging.
Please choose your sources. For a very compact idea of what you’re expected to do, have a look
at scripts/pubish.sh.

7.2 Template Letters

The reader getting to this point in the documentation probably understood that this Ghini project
is above all a very open and collaborative project.

Here in this page you find some template letters, used to welcome new users, or that you can
correct, print, and go with it to a garden, and propose them to adopt Ghini, or share with a group
of your local friends, so you can make Ghini become a (voluntary, or paid) part-time job for you.

108 Chapter 7. Ghini Development

https://packages.ubuntu.com/xenial/bauble
https://mentors.debian.net/package/bauble
https://mentors.debian.net/package/fibra
https://mentors.debian.net/sponsors
https://mentors.debian.net/intro-maintainers

Ghini Documentation, 1.0.x

7.2.1 Dear conservator or scientist,

You are reading Ghini’s presentation letter. Ghini is a libre software project on GitHub, focusing
on botany. Brought to you by a small community of coders, botanists, translators, and supported
by a few institutions around the world, among which, gardens that have adopted it for all their
collection management needs.

The Ghini family is a software suite composed of standalone programs, data servers and hand-
held clients, for data management, and publication:

• Ghini’s core, ghini.desktop, lets you

– enter and correct your data

– navigate its links,

– produce reports

– import and or export using several standard or ad-hoc formats

– review your taxonomy using online sources

all according best practices suggested by top gardens, formalized in standard formats like
ABCD, ITF2, but also as elaborated by our developers, based on the feedback of Ghini
users.

ghini.desktop is developed and continously tested on GNU/Linux, but runs equally
well on Windows, or OSX. [1]

• ghini.pocket is your full time garden companion, an Android app installed from the
Play Store,

– assisting you in collecting or correcting data while in the field,

7.2. Template Letters 109

Ghini Documentation, 1.0.x

– associate pictures to your plants, and verify taxonomic information.

– Import your collected data into the desktop client when back in the office,

ghini.pocket reduces the time spent in front of your desktop PC to a true minimum.

• ghini.web is a web server and a courtesy data hub service, offering you world wide
visibility: Export a selection of your data from your desktop database, and handle it for
publication to the Ghini project, and we will include it at http://gardens.ghini.me/, at no
cost while we’re able to do that, or for a guaranteed minimal amount of time if you are able
to support our hosting costs. ghini.web serves a world map to help locate participating
gardens, and within each garden, its contributed georeferenced plants.

• ghini.tour, a geographic tour Android app aimed at visitors, using OpenStreetMap as
a base map, retrieving its data, gardens and virtual panels, from the web data aggregator
ghini.web.

All software within the Ghini family is either licensed GNU Public License v2+ or v3+. It
is a strong copyleft license. In short, the GPL translates the ethical scientific need to share
knowledge, into legal terms. If you want to read more about it, please refer to https://www.gnu.
org/licenses/copyleft.html

Ghini’s idea about knowledge and software ownership is that software is procedural knowledge
and as such, should be made a “commons”: With software as a commons, “libre software” and
more specifically “Copylefted software”, you not only get the source code, you receive the right
to adapt it, and the invitation to study and learn from it, and to share it, both share forward to
colleagues, and share back to the source. With proprietary software, you are buying your own
ignorance, and with that, your dependency.

This fancy term “copyleft” instead of just “libre software”, means the software you received is
libre software with one extra freedom, guaranteeing every right you were granted upon receiving
the software is never lost.

With copylefted software you are free —actually welcome— to employ local software devel-
opers in your neighbourhood to alter the software according to your needs, please do this on
GitHub, fork the code, develop just as openly as the common practice within Ghini, and when-
ever you want, open a pull request so your edits can be considered for inclusion in the main
branch. Ghini is mostly continuously unit tested, so before your code is added to the main
branch, it should follow our quality guidelines for contributions. With libre software you ac-
quire freedom and contribute to it, something that earns you visibility: Your additions stays
yours, you share them back to the community, and will see them completed and made better by
others. Having your code added to the main branch simplifies your upgrade procedure.

You can also contribute to the software by helping translate it into your native language. [5]

Some videos are published on YouTube, highlighting some of the software capabilities. [6]

Share back with the community. Several developers have spent cumulatively many thousand
hours developing this software, and we’re sharing with the community. We hope by this to
stimulate a community sentiment in whoever starts using what we have produced.

Thanks for your consideration; please let me know if you have any questions,

In case you’re interested in publishing your tree collection on the net, I would be happy to include

110 Chapter 7. Ghini Development

http://gardens.ghini.me/
https://www.gnu.org/licenses/copyleft.html
https://www.gnu.org/licenses/copyleft.html

Ghini Documentation, 1.0.x

your plants, species, coordinates to http://gardens.ghini.me. Georeferenced textual information
panels are also very welcome, all offered as a courtesy: We’re still defining the offer. The idea
behind this is allowing visitors to explore aggregated garden collections, and the current focus
is on trees.

A small example: http://gardens.ghini.me/#garden=Jardín%20el%20Cuchubo

Mario Frasca MSc

[1] http://ghini.readthedocs.io/ - http://ghini.github.io/
[2] https://play.google.com/store/apps/details?id=me.ghini.pocket
[3] http://gardens.ghini.me/
[4] https://play.google.com/store/apps/details?id=me.ghini.tour
[5] https://hosted.weblate.org/projects/ghini/#languages
[6] https://www.youtube.com/playlist?list=PLtYRCnAxpinU_8WEDuRlgsYnNVe4J_4kv

7.2.2 free botanic data management systems

Many institutions still consider software an investment, an asset that is not to be shared with
others, as if it was some economic good that can’t be duplicated, like gold.

As of right now, very few copylefted programs exist for botanic data management:

• ghini.desktop, born as bauble.classic and made a commons by the Belize Botan-
ical Garden. ghini.desktop has three more components, a pocket data collecting
Android app, a Node.js web server, aggregating data from different gardens and pre-
senting it geographically, again a geographic tour app aimed at visitors using the web
data aggregator as its data source. You can find every Ghini component on GitHub:
http://github.com/Ghini

• Specify 6 and 7, made a Commons by the Kansas University. A bit complex to set up, very
difficult to configure and tricky to update. The institutions I’ve met who tried it, only the
bigger ones, with in-house software management capabilities manage to successfully use
it. They use it for very large collections. Specify is extremely generic, it adapts to herbaria,
seed collections, but also to collections of eggs, organic material, fossils, preserved dead
animals, possibly even viruses, I’m not sure. It is this extreme flexibility that makes its
configuration such a complex task. Specify is also on GitHub: https://github.com/specify
and is licensed as GPLv2+.

• Botalista, a French/Swiss cooperation, is GPL as far as rumours go. Its development has
yet to go public.

• bauble.web is an experimental web server by the author of bauble.classic. bauble.
classic has been included into Ghini, to become ghini.desktop. Bauble uses a very
permissive license, making it libre, but not copylefted. As much as 50% of bauble.web
and possibly 30% of ghini.desktop is shared between the two projects. Bauble seems to
be stagnating, and has not yet reached a production-ready stage.

7.2. Template Letters 111

http://gardens.ghini.me
http://gardens.ghini.me
http://ghini.readthedocs.io/
http://ghini.github.io/
https://play.google.com/store/apps/details?id=me.ghini.pocket
http://gardens.ghini.me/
https://play.google.com/store/apps/details?id=me.ghini.tour
https://hosted.weblate.org/projects/ghini/#languages
https://www.youtube.com/playlist?list=PLtYRCnAxpinU_8WEDuRlgsYnNVe4J_4kv
http://github.com/Ghini
https://github.com/specify

Ghini Documentation, 1.0.x

• Taxasoft-BG, by Eric Gouda, a Dutch botanist, specialist in Bromeliaceae, collection
manager at the Utrecht botanical garden. It was Mario Frasca who convinced Eric to
publish what he was doing, licensing it under the GPL, but the repository was not updated
after 2016, April 13th and Eric forgot to explicitly specify the license. You find it on
github: https://github.com/Ejgouda/Taxasoft-BG

• BG-Recorder, by the BGCI, runs on Windows, and requires Access. Developed mostly
between 1997 and 2003, it has not been maintained ever since and isn’t actively distributed
by the BGCI. I’ve not managed to find a download link nor its license statement. It is still
mentioned as the free option for botanic database management.

Of the above, only ghini.desktop satisfies these conditions: Copylefted, available, docu-
mented, maintained, easy to install and configure. Moreover: Cross platform and international-
ized.

7.2.3 Welcome to Ghini/Bauble

Dear new user,

Welcome to Ghini/Bauble.

As the maintainer, I have received your registration for bauble.classic/ghini.desktop, many
thanks for taking your time to fill in the form.

I see you are using bauble.classic-1.0.55, whereas 1.0.55 is the last released version of
bauble.classic, however, bauble.classic is now unmaintained and superseded by the fully com-
patible, but slightly aesthetically different ghini.desktop. Install it following the instructions
found at http://ghini.rtfd.io

The registration service says you’re not yet using the newest Python2 version available. As of
2018-05-01, that is 2.7.15. Using any older version does not necessitate problems, but in case
anything strange happens, please update your Python (and PyGTK) before reporting any errors.

Also thank you for enabling the “sentry” errors and warnings handler. With that enabled, Gh-
ini/Bauble will send any error or warning you might encounter to a central server, where a
developer will be able to examine it. If the warning was caused by an error in the software, its
solution will be present in a subsequent release of the software

If you haven’t already, to enable the sentry and warnings handler, open the “:config” page in
Ghini and double click on the row “bauble.use_sentry_client”.

I hope Ghini already matches your expectations, if this is not the case, the whole Ghini commu-
nity would be very thankful if you took the time to report your experience with it.

The above is one way to contribute to Ghini’s development. Others are: - contribute ideas,
writing on the bauble google forum (https://groups.google.com/forum/#!forum/bauble), - con-
tribute documentation, or translations (https://hosted.weblate.org/projects/ghini/), - give private
feedback, writing to ghini@anche.no, - rate and discuss Ghini openly, and promote its adop-
tion by other institutions, - open an issue on GitHub (https://github.com/Ghini/ghini.desktop/
issues/), - contribute code on GitHub (fork the project on (https://github.com/Ghini/ghini.
desktop/), - hire a developer and have a set of GitHub issues solved, per-haps your own - let
me include your garden on the still experimental worldmap (http://gardens.ghini.me)

112 Chapter 7. Ghini Development

https://github.com/Ejgouda/Taxasoft-BG
http://ghini.rtfd.io
https://groups.google.com/forum/#!forum/bauble
https://hosted.weblate.org/projects/ghini/
mailto:ghini@anche.no
https://github.com/Ghini/ghini.desktop/issues/
https://github.com/Ghini/ghini.desktop/issues/
https://github.com/Ghini/ghini.desktop/
https://github.com/Ghini/ghini.desktop/
http://gardens.ghini.me

Ghini Documentation, 1.0.x

I sincerely hope you will enjoy using this copylefted, libre software

Best regards, Mario Frasca

https://ghini.github.io https://github.com/Ghini/ghini.desktop/issues/

7.2.4 Do you want to join Ghini?

: I generally send a note similar to the following, to GitHub members who “star” the project,
or to WebLate contributors doing more than one line, and at different occasions. If it’s from
GitHub, and if they stated their geographic location in their profile, I alter the letter by first
looking on institutos botánicos if there’s any relevant garden in their neighbourhood.

Dear GitHub member, student, colleague, translator, botanist,

Thank you warmly for your interest in the Ghini project!

From your on-line profile on github, I see you’re located in Xxxx, is that correct?

If you are indeed in Xxxx, you live very close to gardens Yyyy and Zzzz. Maybe you would
consider the following proposition? All would start by contacting the botanical garden there, and
get to know what software they use (what it offers, and at which price) and if they’re interested
in switching to ghini.desktop+pocket+tour+web.

The business model within Ghini is that the software is free and you get it for free, but time
is precious and if a garden needs help, they should be ready to contribute. Maybe you already
have a full-time job and don’t need more things to do, but in case you’re interested, or you have
friends who would be, I’m sure we can work something out.

Let me know where you stand.

best regards, and again thanks for all your contributed translations.

Mario Frasca

7.2. Template Letters 113

https://ghini.github.io
https://github.com/Ghini/ghini.desktop/issues/
http://umap.openstreetmap.fr/en/map/institutos-botanicos_47038#2/18.0/12.0

Ghini Documentation, 1.0.x

114 Chapter 7. Ghini Development

CHAPTER 8

Supporting Ghini

If you’re using Ghini, or if you feel like helping its development anyway, please consider donat-
ing.

115

	Statements
	Ghini’s goals and highlights
	Botanic Garden
	Botanic Garden Software
	Hypersimplified view
	Highlights
	taxonomic information
	importing data
	synonyms
	scientific responsible
	helps off-line identification
	exports and reports
	annotate your info
	garden or herbarium
	database history
	simple and powerful search
	database agnostic
	language agnostic
	platform agnostic
	easily updated
	unit tested
	customizable/extensible

	Mission & Vision
	Who is behind Ghini
	Mission
	Vision

	Installing Ghini
	Installation
	Installing on GNU/Linux
	Installing on MacOSX
	Installing on Windows
	Installing on Android

	User’s Guide
	Initial Configuration
	Should you SQLite?
	Connecting to a database
	Initialize a database

	Searching in Ghini
	Search Strategies
	Search by Value
	Search by Expression
	Binomial search
	Search by Query

	The Query Builder
	Query Grammar

	Editing and Inserting Data
	Notes
	Family
	Genus
	Species/Taxon
	Accessions
	Accession Source

	Plant
	Creating multiple plants
	Pictures

	Locations
	danger zone

	Dealing with Propagations
	Creating a Propagation
	Using a Propagation

	Tagging
	dialog box tagging
	windowless tagging

	Generating reports
	The Report Tool
	Using the Mako Report Formatter
	Using the XSL Report Formatter
	Installing Apache FOP on Windows

	Importing and Exporting Data
	Importing from CSV
	Exporting to CSV
	Importing from JSON
	Exporting to JSON
	Importing from a Generic Database
	Importing a Pictures Collection

	Managing Users
	Creating Users
	Permissions

	Cookbook
	Contributed recipes collection
	Quito Botanical Garden
	Technical
	Taxonomy
	Let the database fit the garden
	Searching the database

	using ghini for a seed database

	Administration
	Database Administration
	SQLite
	MySQL
	PostgreSQL

	Ghini Configuration
	Reporting Errors

	Ghini Family
	the Ghini family
	ghini.pocket
	ghini.web
	ghini.tour
	data streams between software components

	Ghini Development
	Developer’s Manual
	Helping Ghini development
	Software source, versions, branches
	production line

	Development Workflow
	larger issues

	Updating the set of translatable strings
	Producing the docs locally
	Which way do the translated strings reach our users?
	Adding missing unit tests
	What to test
	how to test
	where to put the tests
	writing the tests
	One test, step by step
	And so on
	Testing logging
	Putting all together

	Structure of user interface
	Examples

	Extending Ghini with Plugins
	Plugins structure
	bug solving workflow
	normal development workflow
	publishing to production
	your own fork
	closing step

	Distributing ghini.desktop
	Python Package Index - PyPI
	Windows
	Debian

	Template Letters
	Dear conservator or scientist,
	free botanic data management systems
	Welcome to Ghini/Bauble
	Do you want to join Ghini?

	Supporting Ghini

