
Bauble Documentation
Release 1.1.1

Brett Adams

September 03, 2018

Contents

1 Statements 3

2 Installing Ghini 7

3 Using Ghini 15

4 Administration 31

5 Ghini Development 33

6 Supporting Ghini 47

Python Module Index 49

i

ii

Bauble Documentation, Release 1.1.1

Ghini is an application for managing botanical specimen collections. With it you can create a
searchable database of plant records.

It is open and free and is released under the GNU Public License

Contents 1

http://www.opensource.org
http://www.fsf.org
http://www.fsf.org/licensing/licenses/gpl.html

Bauble Documentation, Release 1.1.1

2 Contents

CHAPTER 1

Statements

1.1 Highlights

not-so-brief list of highlights, meant to whet your appetite.

1.1.1 taxonomic information

When you first start Ghini, and connect to a database, Ghini will initialize the database not only
with all tables it needs to run, but it will also populate the taxon tables for ranks family and
genus, using the data from the “RBG Kew’s Family and Genera list from Vascular Plant Fam-
ilies and Genera compiled by R. K. Brummitt and published by the Royal Botanic Gardens,
Kew in 1992”. In 2015 we have reviewed the data regarding the Orchidaceae, using “Tropi-
cos, botanical information system at the Missouri Botanical Garden - www.tropicos.org” as a
source.

1.1.2 importing data

Ghini will let you import any data you put in an intermediate json format. What you import
will complete what you already have in the database. If you need help, you can ask some Ghini
professional to help you transform your data into Ghini’s intermediate json format.

1.1.3 synonyms

Ghini will allow you define synonyms for species, genera, families. Also this information can
be represented in its intermediate json format and be imported in an existing Ghini database.

3

Bauble Documentation, Release 1.1.1

1.1.4 scientific responsible

Ghini implements the concept of ‘accession’, intermediate between physical plant (or a group
thereof) and abstract taxon. Each accession can associate the same plants to different taxa, if
two taxonomists do not agree on the identification: each taxonomist can have their say and do
not need overwrite each other’s work. All verifications can be found back in the database, with
timestamp and signature.

1.1.5 helps off-line identification

Ghini allows you associate pictures to physical plants, this can help recognize the plant in case
a sticker is lost, or help taxonomic identification if a taxonomist is not available at all times.

1.1.6 exports and reports

Ghini will let you export a report in whatever textual format you need. It uses a powerful tem-
plating engine named ‘mako’, which will allow you export the data in a selection to whatever
format you need. Once installed, a couple of examples are available in the mako subdirectory.

1.1.7 annotate your info

You can associate notes to plants, accessions, species, Notes can be categorized and used
in searches or reports.

1.1.8 garden or herbarium

Management of plant locations.

1.1.9 database history

All changes in the database is stored in the database, as history log. All changes are ‘signed’
and time-stamped. Ghini makes it easy to retrieve the list of all changes in the last working day
or week, or in any specific period in the past.

1.1.10 simple and powerful search

Ghini allows you search the database using simple keywords, e.g.: the name of the location or
a genus name, or you can write more complex queries, which do not reach the complexity of
SQL but allow you a decent level of detail localizing your data.

4 Chapter 1. Statements

Bauble Documentation, Release 1.1.1

1.1.11 database agnostic

Ghini is not a database management system, so it does not reinvent the wheel. It works storing
its data in a SQL database, and it will connect to any database management system which
accepts a SQLAlchemy connector. This means any reasonably modern database system and
includes MySQL, PostgreSQL, Oracle. It can also work with sqlite, which, for single user
purposes is quite sufficient and efficient. If you connect Ghini to a real database system, you
can consider making the database part of a LAMP system (Linux-Apache-MySQL-Php) and
include your live data on your institution web site.

1.1.12 language agnostic

The program was born in English and all its technical and user documentation is still only in that
language, but the program itself has been translated and can be used in various other languages,
including Spanish (86%), Portuguese (100%), French (42%), to name some Southern American
languages, as well as Swedish (100%) and Czech (100%).

1.1.13 platform agnostic

Installing Ghini on Windows is an easy and linear process, it will not take longer than 10
minutes. Ghini was born on Linux and installing it on ubuntu, fedora or debian is also rather
simple. It has been recently successfully tested on MacOSX 10.9.

1.1.14 easily updated

The installation process will produce an updatable installation, where updating it will take less
than one minute. Depending on the amount of feedback we receive, we will produce updates
every few days or once in a while.

1.1.15 unit tested

Ghini is continuously and extensively unit tested, something that makes regression of func-
tionality close to impossible. Every update is automatically quality checked, on the Travis
Continuous Integration service. Integration of TravisCI with the github platform will make it
difficult for us to release anything which has a single failing unit test.

Most changes and additions we make, come with some extra unit test, which defines the be-
haviour and will make any undesired change easily visible.

1.1.16 customizable/extensible

Ghini is extensible through plugins and can be customized to suit the needs of the institution.

1.1. Highlights 5

Bauble Documentation, Release 1.1.1

1.2 Who is behind Ghini

Ghini started as a one-man project, by Brett Adams. He wrote Bauble for the Belize Botanical
Garden, and later on adapted it for a couple of other users who asked him to use it. Brett made
Bauble a commons, by releasing it under a GPL license.

After some years of stagnation Mario Frasca took responsibility of updating Bauble, renamed
it to Ghini in order to mark the difference in activity level, and it is now Mario Frasca writing
this, enhancing the software, looking for users, requesting feedback. . .

So even if currently behind Ghini there’s again one developer, much more importantly, there is
a small but growing global users community.

Translations are provided by volunteers who mostly stay behind the scenes, translating a couple
of missing terms or sentences, and disappearing again.

To make things clearer when we speak of Ghini, but should—and in this document we
will—indicate whether it’s Ghini(the software), or Ghini(the people), unless obviously we
mean both things.

1.3 Mission

To continuously support open and free software for the documentation, research and man-
agement of biodiversity collections, for the benefit of organizations and educational institu-
tions that have or manage botanical collections. For example botanical gardens, arboretums,
herbaria, but also for people studying or working with such collections.

To stimulate users to contributing to the improvement of the software and sharing solutions; to
enhance the availability and visibility of such biodiversity collections.

1.4 Vision

The Vision serves to indicate the way ahead and projects a future image of what we want our
organization to be, in a realistic and attractive way. It serves as motivation because it visualizes
the challenge and direction of necessary changes in order to grow and prosper.

• by the year 2020

• reference point

• community

• development

• integration with web portal

• geographic information

6 Chapter 1. Statements

CHAPTER 2

Installing Ghini

2.1 Introduction

ghini.desktop is a cross-platform program and it will run on unix machines like Linux and
MacOSX, as well as on Windows.

To install Ghini first requires that you install its dependencies that cannot be installed automat-
ically. These include virtualenvwrapper, PyGTK and pip. Python and GTK+, you probably
already have. As long as you have these packages installed then Ghini should be able to install
the rest of its dependencies by itself.

Note: If you follow these installation steps, you will end with Ghini running within a Python
virtual environment, all Python dependencies installed locally, non conflicting with any other
Python program you may have on your system.

if you later choose to remove Ghini, you simply remove the virtual environment, which is a
directory, with all of its content.

2.2 Installing on Linux

1. Download the devinstall.sh script and run it:

https://raw.githubusercontent.com/Ghini/ghini.desktop/master/
→˓scripts/devinstall.sh

Please note that the script will not help you install any extra database connector. This
you will do in a later step.

7

Bauble Documentation, Release 1.1.1

Note: (technical) You can study the script to see what steps if runs for you. In short it will
install dependencies which can’t be satisfied in a virtual environment, then it will create a
virtual environment named ghide, download the sources and connect your git checkout to the
ghini-1.0 branch (this you can consider a production line), it then builds ghini, downloading all
remaining dependencies, and finally it creates a startup script in your ~/bin folder.

Note:

(beginner) To run a script, first make sure you note down the name of the directory to
which you have downloaded the script, then you open a terminal window and in that
window you type bash followed by a space and the complete name of the script includ-
ing directory name, and hit on the enter key.

If the script ends without error, you can now start ghini:

~/bin/ghini

or update ghini to the latest released production patch:

~/bin/ghini -u

The same script you can use to switch to a different production line, but at the moment there’s
only ghini-1.0.

1. on Unity, open a terminal, start ghini, its icon will show up in the launcher, you can now
lock to launcher it.

2. If you would like to use the default SQLite database or you don’t know what this means
then you can skip this step. If you would like to use a database backend other than the
default SQLite backend then you will also need to install a database connector.

If you would like to use a PostgreSQL database then activate the virtual environment and
install psycopg2 with the following commands:

source ~/.virtualenvs/ghide/bin/activate
pip install -U psycopg2

You might need solve dependencies. How to do so, depends on which Linux flavour you
are using. Check with your distribution documentation.

Next. . .

Connecting to a database.

8 Chapter 2. Installing Ghini

http://sqlite.org/
http://www.postgresql.org

Bauble Documentation, Release 1.1.1

2.3 Installing on MacOSX

Being MacOSX a unix environment, most things will work the same as on Linux (sort of).

One difficulty is that there are many more versions of MacOSX out there than one would want
to support, and only the current and its immediately preceding release are kept up-to-date by
Apple-the-firm.

Last time we tested, some of the dependencies could not be installed on MacOSX 10.5 and
we assume similar problems would present themselves on older OSX versions. Ghini has been
successfully tested with 10.7 and 10.9.

First of all, you need things which are an integral part of a unix environment, but which are
missing in a off-the-shelf mac:

1. developers tools: xcode. check the wikipedia page for the version supported on your
mac.

2. package manager: homebrew (tigerbrew for older OSX versions).

with the above installed, run:

brew doctor

make sure you understand the problems it reports, and correct them. pygtk will need xquartz
and brew will not solve the dependency automatically. either install xquartz using brew or the
way you prefer:

brew install Caskroom/cask/xquartz

then install the remaining dependencies:

brew install git
brew install pygtk # takes time and installs all dependencies

follow all instructions on how to activate what you have installed.

the rest is just as on a normal unix machine, and we have a devinstall.sh script for it. Read the
above Linux instructions, follow them, enjoy.

Next. . .

Connecting to a database.

2.4 Installing on Windows

The current maintainer of ghini.desktop has no interest in learning how to produce Windows
installers, so the Windows installation is here reduced to the same installation procedure as on
Unix (Linux and MacOSX).

2.3. Installing on MacOSX 9

Bauble Documentation, Release 1.1.1

Please report any trouble. Help with packaging will be very welcome, in particular by other
Windows users.

The steps described here instruct you on how to install Git, Gtk, Python, and the python
database connectors. With this environment correctly set up, the Ghini installation procedure
runs as on Linux. The concluding steps are again Windows specific.

Note: Ghini has been installed and is known to work fine on W-XP, W-7, W-8 and W-10.
However, Windows is not Ghini’s development and test platform, so please report any problem
you might encounter. During the installation spurious error messages can be expected and
safely ignored.

Note: Direct download links are given for all needed components. They have been tested
in September 2015, but things change with time. If any of the direct download links stops
working, please ring the bell, so we can update the information here.

The installation steps on Windows:

1. download and install git (comes with a unix-like sh and includes vi) from:

https://git-scm.com/download/win

Direct link to download git

all default options are fine, except we need git to be executable from the command
prompt:

2. download and install Python 2.x (32bit) from:

10 Chapter 2. Installing Ghini

https://git-scm.com/download/win
https://github.com/git-for-windows/git/releases/download/v2.9.2.windows.1/Git-2.9.2-32-bit.exe

Bauble Documentation, Release 1.1.1

http://www.python.org

Direct link to download Python

Ghini has been developed and tested using Python 2.x. It will definitely not run on
Python 3.x. If you are interested in helping port to Python 3.x, please contact the Ghini
maintainers.

when installing Python, do put Python in the PATH:

3. download pygtk from the following source. (this requires 32bit python). be sure you
download the “all in one” version:

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/

Direct link to download PyGTK

make a complete install, selecting everything:

2.4. Installing on Windows 11

http://www.python.org
https://www.python.org/ftp/python/2.7.12/python-2.7.12.msi
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Bauble Documentation, Release 1.1.1

4. (Windows 8.x) please consider this additional step. It is possibly necessary to avoid the
following error on Windows 8.1 installations:

Building without Cython.
ERROR: 'xslt-config' is not recognized as an internal or
→˓external command,
operable program or batch file.

If you skip this step and can confirm you get the error, please inform us.

You can download lxml from:

https://pypi.python.org/pypi/lxml/3.6.0

Remember you need the 32 bit version, for Python 2.7.

Direct link to download lxml

5. (optional) download and install a database connector other than sqlite3.

On Windows, it is NOT easy to install psycopg2 from sources, using pip, so “avoid the
gory details” and use a pre-compiled pagkage from:

http://initd.org/psycopg/docs/install.html

Direct link to download psycopg2

6. REBOOT

hey, this is Windows, you need to reboot for changes to take effect!

7. download and run (from \system32\cmd.exe) the batch file:

12 Chapter 2. Installing Ghini

https://pypi.python.org/packages/2.7/l/lxml/lxml-3.6.0.win32-py2.7.exe
http://initd.org/psycopg/docs/install.html
http://www.stickpeople.com/projects/python/win-psycopg/2.6.2/psycopg2-2.6.2.win32-py2.7-pg9.5.3-release.exe

Bauble Documentation, Release 1.1.1

https://raw.githubusercontent.com/Ghini/ghini.desktop/master/scripts/
devinstall.bat

right before you hit the enter key to run the script, your screen might look like something
like this:

this will pull the ghini.desktop repository on github to your home directory, under
Local\github\Ghini, checkout the ghini-1.0 production line, create a virtual
environment and install ghini into it.

you can also run devinstall.bat passing it as argument the numerical part of the
production line you want to follow.

this is the last installation step that depends, heavily, on a working internet connection.

the operation can take several minutes to complete, depending on the speed of your in-
ternet connection.

8. the last installation step creates the Ghini group and shortcuts in the Windows Start Menu,
for all users. To do so, you need run a script with administrative rights. The script is
called devinstall-finalize.bat, it is right in your HOME folder, and has been
created at the previous step.

right-click on it, select run as administrator, confirm you want it to make changes to your
computer. These changes are in the Start Menu only: create the Ghini group, place the
Ghini shortcut.

9. download the batch file you will use to stay up-to-date with the production line you chose
to follow:

https://raw.githubusercontent.com/Ghini/ghini.desktop/master/scripts/
ghini-update.bat

if you are on a recent Ghini installation, each time you start the program, Ghini will check
on the development site and alert you of any newer ghini release within your chosen
production line.

any time you want to update your installation, just start the command prompt and run
ghini-update.bat

2.4. Installing on Windows 13

https://raw.githubusercontent.com/Ghini/ghini.desktop/master/scripts/devinstall.bat
https://raw.githubusercontent.com/Ghini/ghini.desktop/master/scripts/devinstall.bat
https://raw.githubusercontent.com/Ghini/ghini.desktop/master/scripts/ghini-update.bat
https://raw.githubusercontent.com/Ghini/ghini.desktop/master/scripts/ghini-update.bat

Bauble Documentation, Release 1.1.1

If you would like to generate and print PDF reports using Ghini’s default report generator then
you will need to download and install Apache FOP. After extracting the FOP archive you will
need to include the directory you extracted to in your PATH.

Next. . .

Connecting to a database.

2.5 Troubleshooting

1. any error related to lxml.

In order to be able to compile lxml, you have to install a C compiler (on Linux this would
be the gcc package) and Cython (a Python specialization, that gets compiled into C
code. Note: Cython is not CPython).

However, It should not be necessary to compile anything, and pip should be able to
locate the binary modules in the online libraries.

For some reason, this is not the case on Windows 8.1.

https://pypi.python.org/pypi/lxml/3.6.0

Please report any other trouble related to the installation of lxml.

2. Couldn’t install gdata.

For some reason the Google’s gdata package lists itself in the Python Package Index but
doesn’t work properly with the easy_install command. You can download the latest gdata
package from:

http://code.google.com/p/gdata-python-client/downloads/list

Unzip it and run python setup.py installw in the folder you unzip it to.

Next. . .

Connecting to a database.

14 Chapter 2. Installing Ghini

http://xmlgraphics.apache.org/fop/
https://pypi.python.org/pypi/lxml/3.6.0
http://code.google.com/p/gdata-python-client/downloads/list

CHAPTER 3

Using Ghini

3.1 Getting Started

3.1.1 Should you SQLite?

Is this the first time you use Ghini, are you going to work in a stand-alone setting, you have
not the faintest idea how to manage a database management system? If you answered yes to
any of the previous, you probably better stick with SQLite, the easy, fast, zero-administration
file-based database.

With SQLite, you do not need any preparation and you can continue with connecting.

On the other hand, if you want to connect more than one ghini workstation to the same database,
or if you want to make your data available for other clients, as could be a web server in a
LAMP setting, you should consider keeping your database in a database management system
like PostgreSQL or MySQL/MariaDB, both supported by Ghini.

When connecting to a database server as one of the above, you have to manually create: at
least one ghini user, the database you want ghini to use, and to give at lest one ghini user full
permissions on its database. When this is done, Ghini will be able to proceed, creating the
tables and importing the default data set. The process is database-dependent and it falls beyond
the scope of this manual.

If you already got the chills or sick at your stomach, no need to worry, just stick with SQLite,
you do not miss on features nor performance.

3.1.2 Connecting to a database

When you start Ghini the first thing that comes up is the connection dialog.

15

http://www.postgresql.org
https://mariadb.org/

Bauble Documentation, Release 1.1.1

Quite obviously, if this is the first time you start Ghini, you have no connections yet and Ghini
will alert you about it.

This alert will show at first activation and also in the future if your connections list becomes
empty. As it says: click on Add to create your first connection.

Just insert a name for your connection, something meaningful you associate with the collection
to be represented in the database (for example: “my home garden”), and click on OK. You will
be back to the previous screen, but your connection name will be selected and the Connection
Details will have expanded.

16 Chapter 3. Using Ghini

Bauble Documentation, Release 1.1.1

specify the connection details

If you do not know what to do here, Ghini will help you stay safe. Activate the Use default
locations check box and create your first connection by clicking on Connect.

You may safely skip the remainder of this section for the time being and continue reading to
the following section.

fine-tune the connection details

By default Ghini uses the file-based SQLite database. During the installation process you had
the choice (and you still have after installation), to add database connectors other than the
default SQLite.

In this example, Ghini can connect to SQLite, PostgreSQL and MySQL, but no connector is
available for Oracle or MS SQL Server.

3.1. Getting Started 17

Bauble Documentation, Release 1.1.1

If you use SQLite, all you really need specify is the connection name. If you let Ghini use the
default filename then Ghini creates a database file with the same name as the connection and
.db extension, and a pictures folder with the same name and no extension, both in ~/.ghini
on Linux/MacOSX or in AppData\Roaming\Ghini on Windows.

Still with SQLite, you might have received or downloaded a ghini database, and you want to
connect to it. In this case you do not let Ghini use the default filename, but you browse in your
computer to the location where you saved the Ghini SQLite database file.

If you use a different database connector, the dialog box will look different and it will offer you
the option to fine tune all parameters needed to connect to the database of your choice.

If you are connecting to an existing database you can continue to Editing and Inserting Data
and subsequently searching-in-ghini, otherwise read on to the following section on initializing
a database for Ghini.

If you plan to associate pictures to plants, specify also the pictures root folder. The meaning of
this is explained in further detail at Pictures in Editing and Inserting Data.

18 Chapter 3. Using Ghini

Bauble Documentation, Release 1.1.1

3.1.3 Initialize a database

First time you open a connection to a database which had never been seen by Ghini before,
Ghini will first display an alert:

immediately followed by a question:

Be careful when manually specifying the connection parameters: the values you have entered
may refer to an existing database, not intended for use with Ghini. By letting Ghini initialize a
database, the database will be emptied and all of its content be lost.

If you are sure you want to create a database at this connection then select “Yes”. Ghini will
then start creating the database tables and importing the default data. This can take a minute or
two so while all of the default data is imported into the database so be patient.

Once your database has been created, configured, initialized, you are ready to start Editing and
Inserting Data and subsequently searching-in-ghini.

3.2 Searching in Bauble

Searching allows you to view, browse and create reports from your data. You can perform
searches by either entering the queries in the main search entry or by using the Query Builder
to create the queries for you. The results of Bauble searches are listed in the main window.

3.2. Searching in Bauble 19

Bauble Documentation, Release 1.1.1

3.2.1 Search Strategies

Three are three types of search strategies available in Bauble. Considering the search stragety
types available in Bauble, sorted in increasing complexity: you can search by value, expression
or query.

Searching by query, the most complex and powerful, is assisted by the Query Builder, described
below.

All searches are case insensitive so searching for Maxillaria and maxillaria will return the same
results.

Search by Value

Search by value is the simplest way to search. You just type in a string and see what matches.
Which fields/columns are search for your string depends on how the different plugins are con-
figured. For example, by default the PlantPlugin search the family name, the genus name, the
species and infraspecific species names, vernacular names and geography. So if you want to
search in the notes field of any of these types then searching by value is not the search you’re
looking for.

Examples of searching by value would be: Maxillaria, Acanth, 2008.1234, 2003.2.1

Search string are separated by spaces. For example if you enter the search string Block 10
then Bauble will search for the strings Block and 10 and return all the results that match either
of these strings. If you want to search for Block 10 as a while string then you should quote the
string like "Block 10".

Search by Expression

Searching with expression gives you a little more control over what you are searching for. It
can narrow the search down to a specific domain. Expression consist of a domain, an operator
and a value. For example the search: gen=Maxillaria would return all the genera that
match the name Maxillaria. In this case the domain is gen, the operator is = and the value is
Maxillaria.

The search string gen like max% would return all the genera whose names start with
“Max”. In this case the domain again is gen, the operator is like, which allows for “fuzzy”
searching and the value is max%. The percent sign is used as a wild card so if you search for
max% then it search for all value that start with max. If you search for %max it searches for all
values that end in max. The string %max%a would search for all value that contain max and
end in a.

For more information about the different search domain and their short-hand aliases, see search-
domains .

If expression are invalid they are usually used as search by value searchs. For example the
search string gen= will execute a search by value for the string gen and the search string gen
like will search for the string gen and the string like.

20 Chapter 3. Using Ghini

Bauble Documentation, Release 1.1.1

Search by Query

Queries allow the most control over searching. With queries you can search across relations,
specific columns and join search using boolean operators like AND and OR.

An example of a query would be:

plant where accession.species.genus.family=Fabaceae and location.
→˓site="Block 10"

This query would return all the plants whose family are Fabaceae and are located in Block 10.

Searching with queries usually requires some knowledge of the Bauble internals and database
table layouts.

A couple of useful examples:

• Which locations are in use:

location where plants.id!=0

• Which genera are associated to at least one accession:

genus where species.accession.id!=0

Domains

The following are the common search domain and the columns they search by default. The
default columns are used when searching by value and expression. The queries do not use the
default columns.

Domains family, fam: Search bauble.plugins.plants.Family

genus, gen: Search bauble.plugins.plants.Genus

species, sp: Search bauble.plugins.plants.Species

geography: Search bauble.plugins.plants.Geography

acc: Search bauble.plugins.garden.Accession

plant: Search bauble.plugins.garden.Plant

location, loc: Search bauble.plugins.garden.Location

3.2.2 The Query Builder

The Query Builder helps you build complex search queries through a point and click interface.
To open the Query Builder click the to the left of the search entry or select Tools→Query
Builder from the menu.

3.2. Searching in Bauble 21

Bauble Documentation, Release 1.1.1

The Query Builder composes a query that will be understood by the Query Search Strategy
described above. You can use the Query Builder to get a feeling of correct queries before you
start typing them by hand, something that you might prefer if you are a fast typer.

After opening the Query Builder you must select a search domain. The search domain will
determine the type of data that is returned and the properties that you can search.

The search domain is similar to a table in the database and the properties would be the columns
on the table. Often the table/domain and properties/columns are the same but not always.

Once a search domain is selected you can then select a property of the domain to compare
values to. The search operator can then be changed for how you want to make the search
comparison. Finally you must enter a value to compare to the search property.

If the search property you have selected can only have specific values then a list of possible
values will be provided for you to choose from.

22 Chapter 3. Using Ghini

Bauble Documentation, Release 1.1.1

If multiple search properties are necessary then clicking on the plus sign will add more search
properties. Select And/Or next to the property name choose how the properties will be com-
bined in the search query.

When you are done building your query click OK to perform the search.

3.3 Editing and Inserting Data

The main way that we add or change information in Ghini is by using the editors. Each ba-
sic type of data has its own editor. For example there is a Family editor, a Genus editor, an
Accession editor, etc.

To create a new record click on the Insert menu on the menubar and then select the type of
record your would like to create. This will open a new blank editor for the type.

To edit an existing record in the database right click on an item in the search results and select
Edit from the popup menu. This will open an editor that will allow you to change the values on
the record that you selected.

Most types also have children which you can add by right clicking on the parent and selecting
“Add ???. . . ” on the context menu. For example, a Family has Genus children: you can add a
Genus to a Family by right clicking on a Family and selecting “Add genus”.

3.3.1 Notes

Almost all of the editors in Ghini have a Notes tab which should work the same regardless of
which editor you are using.

If you enter a web address in a note then the link will show up in the Links box when the item
your are editing is selected in the search results.

You can browse the notes for an item in the database using the Notes box at the bottom of the
screen. The Notes box will be desensitized if the selected item does not have any notes.

3.3.2 Family

The Family editor allows you to add or change a botanical family.

The Family field on the editor will change the name of the family. The Family field is required.

The Qualifier field will change the family qualifier. The value can either be sensu lato, sensu
stricto or nothing.

Synonyms allow you to add other families that are synonyms with the family you are currently
editing. To add a new synonyms type in a family name in the entry. You must select a family
name from the list of completions. Once you have selcted a family name that you want to add
as a synonym click on the Add button next to the synonym list and it will add the selected
synonym to the list. To remove a synonym select the synonym from the list and click on the
Remove button.

3.3. Editing and Inserting Data 23

Bauble Documentation, Release 1.1.1

To cancel your changes without saving then click on the Cancel button.

To save the family you are working on then click OK.

To save the family you are working on and add a genus to it then click on the Add Genera
button.

To add another family when you are finished editing the current one click on the Next button
on the bottom. This will save the current family and open a new blank family editor.

3.3.3 Genus

The Genus editor allows you to add or change a botanical genus.

The Family field on the genus editor allows you to choose the family for the genus. When you
begin type a family name it will show a list of families to choose from. The family name must
already exist in the database before you can set it as the family for the genus.

The Genus field allows you to set the genus for this entry.

The Author field allows you to set the name or abbreviation of the author(s) for the genus.

Synonyms allow you to add other genera that are synonyms with the genus you are currently
editing. To add a new synonyms type in a genus name in the entry. You must select a genus
name from the list of completions. Once you have selcted a genus name that you want to add
as a synonym click on the Add button next to the synonym list and it will add the selected
synonym to the list. To remove a synonym select the synonym from the list and click on the
Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the genus you are working on then click OK.

To save the genus you are working on and add a species to it then click on the Add Species
button.

To add another genus when you are finished editing the current one click on the Next button on
the bottom. This will save the current genus and open a new blank genus editor.

3.3.4 Species/Taxon

For historical reasons called a species, but by this we mean a taxon at rank species or lower.
It represents a unique name in the database. The species editor will allow you to construct the
name as well as associate metadata with the taxon such as its distribution, synonyms and other
information.

The Infraspecific parts in the species editor will allow you to specify the taxon further than at
species rank.

To cancel your changes without saving then click on the Cancel button.

To save the species you are working on then click OK.

24 Chapter 3. Using Ghini

Bauble Documentation, Release 1.1.1

To save the species you are working on and add an accession to it then click on the Add Acces-
sion button.

To add another species when you are finished editing the current one click on the Next button
on the bottom. This will save the current species and open a new blank species editor.

3.3.5 Accessions

The Accession editor allows us to add an accession to a species. In Ghini an accession repre-
sents a group of plants or clones. The accession would refer maybe a group of seed or cuttings
from a species. A plant would be an individual from that accesssion, i.e. a specific plant in a
specific location.

Accession Source

The source of the accessions lets you add more information about where this accession came
from. At the moment the type of the source can be either a Collection or a Donation.

Collection

A Collection.

Donation

A Donation.

3.3.6 Plant

The Plant editor.

Creating multiple plants

You can create multiple Plants by using ranges in the code entry. This is only allowed when
creating new plants and it is not possible when editing existing Plants in the database.

For example the range, 3-5 will create plant with code 3,4,5. The range 1,4-7,25 will create
plants with codes 1,4,5,6,7,25.

When you enter the range in the plant code entry the entry will turn blue to indicate that you
are now creating multiple plants. Any fields that are set while in this mode will be copied to all
the plants that are created.

3.3. Editing and Inserting Data 25

Bauble Documentation, Release 1.1.1

Pictures

Just as almost all objects in the Ghini database can have Notes associated to them, Plants can
have Pictures: next to the tab for Notes, the Plants editor contains an extra tab called “Pictures”.
You can associate as many pictures as you might need to a plant.

When you associate a picture to a plant, the file is copied in the pictures folder, and a miniature
(500x500) is generated and copied in the thumbnails folder inside of the pictures folder.

As of Ghini-1.0.58, Pictures are not kept in the database. To ensure pictures are available on all
terminals where you have installed and configured Ghini, you can use a file sharing service like
Copy or Dropbox. The personal choice of the writer of this document is to use Copy, because
it offers much more space and because of its “Fair Storage” policy.

Remember that you have configured the pictures root folder when you specified the details of
your database connection. Again, you should make sure that the pictures root folder is shared
with your file sharing service of choice.

When a Plant in the current selection is highlighted, its pictures are displayed in the pictures
pane, the pane left of the information pane. When an accession in the selection is highlighted,
any picture associated to the plants in the highlighted accession are displayed in the pictures
pane.

3.3.7 Locations

The Location editor

danger zone

The location editor contains an initially hidden section named danger zone. The widgets con-
tained in this section allow the user to merge the current location into a different location, letting
the user correct spelling mistakes or implement policy changes.

3.4 Tagging

Tagging is an easy way to give context to an object or create a collection of object that you
want to recall later. For example if you want to collect a bunch of plants that you later want
to create a report from you can tag them with the string “for that report i was thinking about”.
You can then select “for that report i was thinking about” from the tags menu to show you all
the objects you tagged.

Tagging can be done two ways. By selecting one or more items in the search results and press-
ing Ctrl-T or by selecting Tag→Tag Selection from the menu. If you have selected multiple
items then only that tags that are common to all the selected items will have a check next to it.

26 Chapter 3. Using Ghini

Bauble Documentation, Release 1.1.1

3.5 Generating reports

3.5.1 Using the Mako Report Formatter

The Mako report formatter uses the Mako template language for generating reports. More
information about Mako and its language can be found at makotemplates.org.

The Mako templating system should already be installed on your computer if Bauble is in-
stalled.

Creating reports with Mako is similar in the way that you would create a web page from a
template. It is much simpler than the XSL Formatter(see below) and should be relatively easy
to create template for anyone with a little but of programming experience.

The template generator will use the same file extension as the template which should indicate
the type of output the template with create. For example, to generate an HTML page from
your template you should name the template something like report.html. If the template will
generate a comma seperated value file you should name the template report.csv.

The template will receive a variable called values which will contain the list of values in the
current search.

The type of each value in values will be the same as the search domain used in the search query.
For more information on search domains see Domains.

If the query does not have a search domain then the values could all be of a different type and
the Mako template should prepared to handle them.

3.5.2 Using the XSL Report Formatter

The XSL report formatter requires an XSL to PDF renderer to convert the data to a PDF file.
Apache FOP is is a free and open-source XSL->PDF renderer and is recommended.

If using Linux, Apache FOP should be installable using your package manager. On De-
bian/Ubuntu it is installable as fop in Synaptic or using the following command:

apt-get install fop

Installing Apache FOP on Windows

You have two options for installing FOP on Windows. The easiest way is to download the
prebuilt ApacheFOP-0.95-1-setup.exe installer.

Alternatively you can download the archive. After extracting the archive you must add the
directory you extracted the archive to to your PATH environment variable.

3.5. Generating reports 27

http://www.makotemplates.org
http://code.google.com/p/apache-fop-installer/downloads/detail?name=ApacheFOP-0.95-1-setup.exe&can=2&q=#makechanges
http://www.apache.org/dist/xmlgraphics/fop/binaries/

Bauble Documentation, Release 1.1.1

3.6 Importing and Exporting Data

Although Ghini can be extended through plugins to support alternate import and export formats,
by default it can only import and export comma seperated values files or CSV.

There is some support for exporting to the Access for Biological Collections Data it is limited.

There is also limited support for exporting to an XML format that more or less reflects exactly
the tables and row of the database.

Exporting ABCD and XML will not be covered here.

Warning: Importing files will most likely destroy any data you have in the database so
make sure you have backed up your data.

3.6.1 Importing from CSV

In general it is best to only import CSV files into Ghini that were previously exported from
Ghini. It is possible to import any CSV file but that is more advanced that this doc will cover.

To import CSV files into Ghini select Tools→Export→Comma Seperated Values from the
menu.

After clicking OK on the dialog that ask if you are sure you know what you’re doing a file
chooser will open. In the file chooser select the files you want to import.

3.6.2 Exporting to CSV

To export the Ghini data to CSV select Tools→Export→Comma Seperated Values from the
menu.

This tool will ask you to select a directory to export the CSV data. All of the tables in Ghini
will be exported to files in the format tablename.txt where tablename is the name of the table
where the data was exported from.

3.6.3 Importing from JSON

This is the way to import data into an existing database, without destroying previous content. A
typical example of this functionality would be importing your digital collection into a fresh, just
initialized Ghini database. Converting a database into ghini json interchange format is beyond
the scope of this manual, please contact one of the authors if you need any further help.

Using the Ghini json interchange format, you can import data which you have exported from a
different Ghini installation.

28 Chapter 3. Using Ghini

Bauble Documentation, Release 1.1.1

3.6.4 Exporting to JSON

This feature is still under development.

when you activate this export tool, you are given the choice to specify what to export. You can
use the current selection to limit the span of the export, or you can start at the complete content
of a domain, to be chosen among Species, Accession, Plant.

Exporting Species will only export the complete taxonomic information in your database. Ac-
cession will export all your accessions plus all the taxonomic information it refers to: unreferred
to taxa will not be exported. Plant will export all living plants (some accession might not be
included), all referred to locations and taxa.

3.7 Managing Users

Note: The Bauble users plugin is only available on PostgreSQL based databases.

The Bauble User’s Plugin will allow you to create and manage the permissions of users for
your Bauble database.

3.7. Managing Users 29

Bauble Documentation, Release 1.1.1

3.7.1 Creating Users

To create a new user. . .

3.7.2 Permissions

Bauble allows read, write and execute permissions.

30 Chapter 3. Using Ghini

CHAPTER 4

Administration

4.1 Database Administration

If you are using a real DBMS to hold your botanic data, then you need do something about
database administration. While database adnimistration is far beyond the scope of this docu-
ment, we make our users aware of it.

4.1.1 SQLite

SQLite is not what one would consider a real DBMS: each SQLite database is just in one file.
Make safety copies and you will be fine. If you don’t know where to look for your database
files, consider that, per default, ghini puts its data in the ~/.bauble/ directory.

In Windows it is somewhere in your AppData directory, most likely in
AppData\Roaming\Bauble. Do keep in mind that Windows does its best to hide
the AppData directory structure to normal users.

The fastest way to open it is with the file explorer: type ‘‘%APPDATA%‘ and hit enter.

4.1.2 MySQL

Please refer to the official documentation.

4.1.3 PostgreSQL

Please refer to the official documentation. A very thorough discussion of your backup options
starts at chapter_24.

31

http://www.postgresql.org/docs/9.1/static/backup.html

Bauble Documentation, Release 1.1.1

4.2 Ghini Configuration

Ghini uses a configuration file to store values across invocations. This file is associated to a
user account and every user will have their own configuration file.

To review the content of the Ghini configuration file, type :prefs in the text entry area where
you normally type your searches, then hit enter.

You normally do not need tweaking the configuration file, but you can do so with a normal text
editor program. Ghini configuration file is at the default location for SQLite databases.

4.3 Reporting Errors

Should you notice anything unexpected in Ghini’s behaviour, please consider filing an issue on
the Ghini development site.

Ghini development site can be accessed via the Help menu.

32 Chapter 4. Administration

CHAPTER 5

Ghini Development

5.1 Downloading the source

The Ghini source can be downloaded from our source repository on github.

If you want a particular version of Ghini, we release and maintain versions into branches.
You should git checkout the branch corresponding to the version of your choice. Branch
names for Ghini versions are of the form ghini-x.y, where x.y can be 1.0, for example. Our
workflow is to commit to the master development branch or to a patch branch and to include
the commits into a release branch when ready.

To check out the most recent code from the source repository you will need to install the Git
version control system. Git is incuded in all reasonable Linux distributions and can be installed
on all current operating systems.

Once you have installed Git you can checkout the latest Ghini code with the following com-
mand:

git clone https://github.com/Ghini/ghini.desktop.git

For more information about other available code branches go to ghini.desktop on github.

5.2 Development Workflow

5.2.1 production line

A ghini production line is a branch. Currently there is only one production line, that is ghini-
1.0. In perspective, we will have several one, each in use by one or more gardens.

33

http://github.com/Ghini/ghini.desktop
http://www.git.org
http://www.github.com/Ghini/ghini.desktop

Bauble Documentation, Release 1.1.1

As long as we have only one production line, I keep working on the master branch, unless I
later realize the work is going to take longer than one or two days.

5.2.2 batches of simple issues

For issues that can be managed in one or two commits, and as long as there’s no other activity
on the repository, work on the master branch, accumulate issue-solving commits, finally merge
master into the production line ghini-1.0.

5.2.3 larger issues

When facing a single larger issue, create a branch tag, and follow the workflow described at

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

in short:

git up
git checkout -b issue-xxxx
git push origin issue-xxxx

work on the new branch. When ready, go to github, merge the branch with master, solve
conflicts where necessary, delete the temporary branch.

when ready for publication, merge master into the production line.

5.3 Setting up the testing environment

In Ghini, a developer installation starts with our installation procedure for a standard user in-
stallation. What you still need to set up to start contributing quality code is a decent editor, and
the testing environment.

So first choose a decent editor, and here opinions vary and all are equally valuable, here we
describe how to set up nose, the testing environment at the base of our unit test suites.

A standard user installation gets you Ghini installed in a virtual environment, this virtual en-
vironment is enough for running the program, but misses two modules for unit testing: nose
and coverage. You simply need activate the environment, and install the them:

``. ~/.virtualenv/ghide/bin/activate``
``pip install coverage nose -I``

the -I option is necessary to make sure that the two modules get installed in the virtual envi-
ronment, whether they are already in your global installation or not.

at this point you should be able to run the test suite:

34 Chapter 5. Ghini Development

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Bauble Documentation, Release 1.1.1

``cd ~/Local/github/Ghini/ghini.desktop/``
``. ~/.virtualenv/ghide/bin/activate``
``./scripts/update-coverage.sh``

5.4 Adding missing unit tests

If you are interested contributing to development of Ghini, a good way to do so would be by
helping us finding and writing the missing unit tests.

A well tested function is one whose behaviour you cannot change without breaking at least one
unit test.

We all agree that in theory theory and practice match perfectly and that one first writes the
tests, then implements the function. In practice, however, practice does not match theory and
we have been writing tests after writing and even publishing the functions.

This section describes the process of adding unit tests for bauble.plugins.plants.
family.remove_callback.

5.4.1 What to test

First of all, open the coverage report index, and choose a file with low coverage.

For this example, run in October 2015, we landed on bauble.plugins.plants.
family, at 33%.

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ffamily.
py

The first two functions which need tests, edit_callback and add_genera_callback,
include creation and activation of an object relying on a custom dialog box. We should really
first write unit tests for that class, then come back here.

The next function, remove_callback, also activates a couple of dialog and message boxes,
but in the form of invoking a function requesting user input via yes-no-ok boxes. These func-
tions we can easily replace with a function mocking the behaviour.

5.4.2 how to test

So, having decided what to describe in unit test, we look at the code and we see it needs
discriminate a couple of cases:

parameter correctness

• the list of families has no elements.

• the list of families has more than one element.

• the list of families has exactly one element.

5.4. Adding missing unit tests 35

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ffamily.py
https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ffamily.py

Bauble Documentation, Release 1.1.1

cascade

• the family has no genera

• the family has one or more genera

confirm

• the user confirms deletion

• the user does not confirm deletion

deleting

• all goes well when deleting the family

• there is some error while deleting the family

I decide I will only focus on the cascade and the confirm aspects. Two binary questions: 4
cases.

5.4.3 where to put the tests

Locate the test script and choose the class where to put the extra unit tests.

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ftest.
py#L273

Note: The FamilyTests class contains a skipped test, implementing it will be quite a
bit of work because we need rewrite the FamilyEditorPresenter, separate it from the Fami-
lyEditorView and reconsider what to do with the FamilyEditor class, which I think should be
removed and replaced with a single function.

5.4.4 writing the tests

After the last test in the FamilyTests class, I add the four cases I want to describe, and I make
sure they fail, and since I’m lazy, I write the most compact code I know for generating an error:

def test_remove_callback_no_genera_no_confirm(self):
1/0

def test_remove_callback_no_genera_confirm(self):
1/0

def test_remove_callback_with_genera_no_confirm(self):
1/0

def test_remove_callback_with_genera_confirm(self):
1/0

36 Chapter 5. Ghini Development

https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ftest.py#L273
https://coveralls.io/builds/3741152/source?filename=bauble%2Fplugins%2Fplants%2Ftest.py#L273

Bauble Documentation, Release 1.1.1

5.4.5 One test, step by step

Let’s start with the first test case.

When writing tests, I generally follow the pattern:

• T0 (initial condition),

• action,

• T1 (testing the result of the action given the initial conditions)

Note: There’s a reason why unit tests are called unit tests. Please never test two actions in one
test.

So let’s describe T0 for the first test, a database holding a family without genera:

def test_remove_callback_no_genera_no_confirm(self):
f5 = Family(family=u'Arecaceae')
self.session.add(f5)
self.session.flush()

We do not want the function being tested to invoke the interactive utils.yes_no_dialog
function, we want remove_callback to invoke a non-interactive replacement function.
We achieve this simply by making utils.yes_no_dialog point to a lambda expres-
sion which, like the original interactive function, accepts one parameter and returns a boolean.
In this case: False:

def test_remove_callback_no_genera_no_confirm(self):
T_0
f5 = Family(family=u'Arecaceae')
self.session.add(f5)
self.session.flush()

action
utils.yes_no_dialog = lambda x: False
from bauble.plugins.plants.family import remove_callback
remove_callback(f5)

Next we test the result.

Well, we don’t just want to test whether or not the object Arecaceae was deleted, we also
should test the value returned by remove_callback, and whether yes_no_dialog and
message_details_dialog were invoked or not.

A lambda expression is not enough for this. We do something apparently more complex,
which will make life a lot easier.

Let’s first define a rather generic function:

5.4. Adding missing unit tests 37

Bauble Documentation, Release 1.1.1

def mockfunc(msg=None, name=None, caller=None, result=None):
caller.invoked.append((name, msg))
return result

and we grab partial from the functools standard module, to partially apply the above
mockfunc, leaving only msg unspecified, and use this partial application, which is a function
accepting one parameter and returning a value, to replace the two functions in utils. The test
function now looks like this:

def test_remove_callback_no_genera_no_confirm(self):
T_0
f5 = Family(family=u'Arecaceae')
self.session.add(f5)
self.session.flush()
self.invoked = []

action
utils.yes_no_dialog = partial(

mockfunc, name='yes_no_dialog', caller=self, result=False)
utils.message_details_dialog = partial(

mockfunc, name='message_details_dialog', caller=self)
from bauble.plugins.plants.family import remove_callback
result = remove_callback([f5])
self.session.flush()

The test section checks that message_details_dialog was not invoked, that
yes_no_dialog was invoked, with the correct message parameter, that Arecaceae is still
there:

effect
self.assertFalse('message_details_dialog' in

[f for (f, m) in self.invoked])
self.assertTrue(('yes_no_dialog', u'Are you sure you want to '

'remove the family <i>Arecaceae</i>?')
in self.invoked)

self.assertEquals(result, None)
q = self.session.query(Family).filter_by(family=u"Arecaceae")
matching = q.all()
self.assertEquals(matching, [f5])

5.4.6 And so on

there are two kinds of people, those who complete what they start, and so on

Next test is almost the same, with the difference that the utils.yes_no_dialog should
return True (this we achieve by specifying result=True in the partial application of the
generic mockfunc).

With this action, the value returned by remove_callback should be True, and there should

38 Chapter 5. Ghini Development

Bauble Documentation, Release 1.1.1

be no Arecaceae Family in the database any more:

def test_remove_callback_no_genera_confirm(self):
T_0
f5 = Family(family=u'Arecaceae')
self.session.add(f5)
self.session.flush()
self.invoked = []

action
utils.yes_no_dialog = partial(

mockfunc, name='yes_no_dialog', caller=self, result=True)
utils.message_details_dialog = partial(

mockfunc, name='message_details_dialog', caller=self)
from bauble.plugins.plants.family import remove_callback
result = remove_callback([f5])
self.session.flush()

effect
self.assertFalse('message_details_dialog' in

[f for (f, m) in self.invoked])
self.assertTrue(('yes_no_dialog', u'Are you sure you want to '

'remove the family <i>Arecaceae</i>?')
in self.invoked)

self.assertEquals(result, True)
q = self.session.query(Family).filter_by(family=u"Arecaceae")
matching = q.all()
self.assertEquals(matching, [])

have a look at commit 734f5bb9feffc2f4bd22578fcee1802c8682ca83 for the other two test
functions.

5.4.7 Putting all together

From time to time you want to activate the test class you’re working at:

nosetests bauble/plugins/plants/test.py:FamilyTests

And at the end of the process you want to update the statistics:

./scripts/update-coverage.sh

5.5 Plugins structure

Ghini is a framework for handling collections, and is distributed along with a set of plugins
making Ghini a botanical collection manager. But Ghini stays a framework and you could in
theory remove all plugins we distribute and write your own, or write your own plugins that
extend or complete the current Ghini behaviour.

5.5. Plugins structure 39

Bauble Documentation, Release 1.1.1

Once you have selected and opened a database connection, you land in the Search window. The
Search window is an interaction between two objects: SearchPresenter (SP) and SearchView
(SV).

SV is what you see, SP holds the program status and handles the requests you express through
SV. Handling these requests affect the content of SV and the program status in SP.

The search results shown in the largest part of SV are rows, objects that are instances of classes
registered in a plugin.

Each of these classes must implement an amount of functions in order to properly behave within
the Ghini framework. The Ghini framework reserves space to pluggable classes.

SP knows of all registered (plugged in) classes, they are stored in a dictionary, associating a
class to its plugin implementation. SV has a slot (a gtk.Box) where you can add elements. At
any time, at most only one element in the slot is visible.

A plugin defines one or more plugin classes. A plugin class plays the role of a partial presenter
(pP - plugin presenter) as it implement the callbacks needed by the associated partial view
fitting in the slot (pV - plugin view), and the MVP pattern is completed by the parent presenter
(SP), again acting as model. To summarize and complete:

• SP acts as model,

• the pV partial view is defined in a glade file.

• the callbacks implemented by pP are referenced by the glade file.

• a context menu for the SP row,

• a children property.

when you register a plugin class, the SP:

• adds the pV in the slot and makes it non-visible.

• adds an instance of pP in the registered plugin classes.

• tells the pP that the SP is the model.

• connects all callbacks from pV to pP.

when an element in pV triggers an action in pP, the pP can forward the action to SP and can
request SP that it updates the model and refreshes the view.

When the user selects a row in SP, SP hides everything in the pluggable slot and shows only
the single pV relative to the type of the selected row, and asks the pP to refresh the pV with
whatever is relative to the selected row.

Apart from setting the visibility of the various pV, nothing needs be disabled nor removed: an
invisible pV cannot trigger events!

40 Chapter 5. Ghini Development

Bauble Documentation, Release 1.1.1

5.6 Developer’s Manual

5.6.1 helping ghini development

Installing Ghini always includes downloading the sources, connected to the github repository.
This is so because in our eyes, every user is always potentially also a developer.

If you want to contribute to Ghini, you can do so in quite a few different ways:

• use the software, note the things you don’t like, open issue for each of them. a developer
will react.

• if you have an idea of what you miss in the software but can’t quite formalize it into
separate issues, you could consider hiring a professional. this is the best way to make
sure that something happens quickly on Ghini. do make sure the developer opens issues
and publishes their contribution on github.

• translate! any help with translations will be welcome, so please do! you can do this
without installing anything on your computer, just using the on-line translation service
offered by http://hosted.weblate.org/

• fork the respository, choose an issue, solve it, open a pull request. see the bug solving
workflow below.

5.6.2 bug solving workflow

normal development workflow

• while using the software, you notice a problem, or you get an idea of something that
could be better, you think about it good enough in order to have a very clear idea of what
it really is, that you noticed. you open an issue and describe the problem. someone might
react with hints.

• you open the issues site and choose one you want to tackle.

• assign the issue to yourself, this way you are informing the world that you have the
intention to work at it. someone might react with hints.

• optionally fork the repository in your account and preferably create a branch, clearly
associated to the issue.

• write unit tests and commit them to your branch (do not commit failing unit tests to the
master branch).

• write more unit tests (ideally, the tests form the complete description of the feature you
are adding or correcting).

• make sure the feature you are adding or correcting is really completely described by the
unit tests you wrote.

5.6. Developer’s Manual 41

http://hosted.weblate.org/

Bauble Documentation, Release 1.1.1

• make sure your unit tests are atomic, that is, that you test variations on changes along
one single variable. do not give complex input to unit tests or tests that do not fit on one
screen (25 lines of code).

• write the code that makes your tests succeed.

• update the i18n files (run ./scripts/i18n.sh).

• whenever possible, translate the new strings you put in code or glade files.

• commit your changes.

• push to github.

• open a pull request.

publishing to production

• open the pull request page using as base the production line, compared to master.

• make sure a bump commit is included in the differences.

• it should be possible to automatically merge the branches.

• create the new pull request, call it as “publish to the production line”.

• you possibly need wait for travis-ci to perform the checks.

• merge the changes.

• tell the world about it: on facebook, the google group, linkedin, . . .

closing step

• review this workflow. consider this as a guideline, to yourself and to your colleagues.
please help make it better and matching the practice.

5.7 Extending Ghini with Plugins

Nearly everything about Ghini is extensible through plugins. Plugins can create tables, define
custom searchs, add menu items, create custom commands and more.

To create a new plugin you must extend the bauble.pluginmgr.Plugin class.

5.8 structure of user interface

the user interface is built according to the Model-View-Presenter architectural pattern. The
view is described in a glade file and is totally dumb, you do not subclass it because it imple-
ments no behaviour and because its appearance is, as said, described elsewhere (the glade file),
including the association signal-callbacks. The model simply follows the sqlalchemy practices.

42 Chapter 5. Ghini Development

Bauble Documentation, Release 1.1.1

You will subclass the presenter in order to:

• define widget_to_field_map, the association from name of view object to name of
model attribute,

• override view_accept_buttons, the list of widget names which, if activated by the
user, mean that the view should be closed,

• define all needed callbacks,

The presenter should not know of the internal structure of the view, instead, it should use
the view api to set and query the values inserted by the user. The base class for the presen-
ter, GenericEditorPresenter defined in bauble.editor, implements many generic
callbacks.

Model and Presenter can be unit tested, not the View.

The Tag plugin is a good minimal example, even if the TagItemGUI falls outside this de-
scription. Other plugins do not respect the description.

A good example of Presenter/View pattern (no model) is given by the connection manager.

We use the same architectural pattern for non-database interaction, by setting the presenter also
as model. We do this, for example, for the JSON export dialog box.

5.9 API Documentation

5.9.1 bauble

The top level module for Ghini.

bauble.version = '1.1.1'
str(object=’‘) -> string

Return a nice string representation of the object. If the argument is a string, the return
value is the same object.

bauble.gui = None
bauble.gui is the instance bauble.ui.GUI

bauble.command_handler(cmd, arg)
Call a command handler.

Parameters

• cmd (str) – The name of the command to call

• arg (list) – The arg to pass to the command handler

bauble.main(uri=None)
Run the main Ghini application.

Parameters uri (str) – the URI of the database to connect to. For more in-
formation about database URIs see http://www.sqlalchemy.org/docs/05/
dbengine.html#create-engine-url-arguments

5.9. API Documentation 43

http://www.sqlalchemy.org/docs/05/dbengine.html#create-engine-url-arguments
http://www.sqlalchemy.org/docs/05/dbengine.html#create-engine-url-arguments

Bauble Documentation, Release 1.1.1

bauble.main_is_frozen()
Return True if we are running in a py2exe environment, else return False

bauble.quit()
Stop all tasks and quit Ghini.

bauble.save_state()
Save the gui state and preferences.

5.9.2 bauble.db

bauble.db.Base
All tables/mappers in Bauble which use the SQLAlchemy declarative plugin for declar-
ing tables and mappers should derive from this class.

An instance of sqlalchemy.ext.declarative.Base

bauble.db.metadata
The default metadata for all Bauble tables.

An instance of sqlalchemy.schema.MetaData

5.9.3 bauble.connmgr

5.9.4 bauble.editor

5.9.5 bauble.i18n

The i18n module defines the _() function for creating translatable strings.

_() is added to the Python builtins so there is no reason to import this module more than once
in an application. It is usually imported in bauble

5.9.6 bauble.ui

5.9.7 bauble.meta

5.9.8 bauble.paths

Access to standard paths used by Ghini.

bauble.paths.main_dir()
Returns the path of the bauble executable.

bauble.paths.lib_dir()
Returns the path of the bauble module.

bauble.paths.locale_dir()
Returns the root path of the locale files

44 Chapter 5. Ghini Development

Bauble Documentation, Release 1.1.1

bauble.paths.user_dir()
Returns the path to where user data are saved.

this is not the same as Application Data, for app_data is going to be replaced at each new
installation or upgrade of the software. user_data is responsibility of the user and the
software should use it, not overrule it.

not implemented yet. will be a configuration item.

5.9.9 bauble.pluginmgr

5.9.10 bauble.prefs

5.9.11 bauble.task

5.9.12 bauble.types

5.9.13 bauble.utils

5.9.14 bauble.view

class bauble.view.SearchView.ViewMeta

5.9.15 bauble.search

5.9.16 bauble.plugins.plants

5.9.17 bauble.plugins.garden

5.9.18 bauble.plugins.abcd

5.9.19 bauble.plugins.imex

5.9.20 bauble.plugins.report

5.9.21 bauble.plugins.report.xsl

5.9.22 bauble.plugins.report.mako

5.9.23 bauble.plugins.tag

5.9. API Documentation 45

Bauble Documentation, Release 1.1.1

46 Chapter 5. Ghini Development

CHAPTER 6

Supporting Ghini

If you’re using Ghini, or if you feel like helping its development anyway, please consider
donating

47

https://pledgie.com/campaigns/29188

Bauble Documentation, Release 1.1.1

48 Chapter 6. Supporting Ghini

Python Module Index

b
bauble, 43
bauble.i18n, 44
bauble.paths, 44

49

Bauble Documentation, Release 1.1.1

50 Python Module Index

Index

B
bauble (module), 43
bauble.db.Base (in module bauble), 44
bauble.db.metadata (in module bauble), 44
bauble.i18n (module), 44
bauble.paths (module), 44
bauble.view.SearchView.ViewMeta (class in

bauble.paths), 45

C
command_handler() (in module bauble), 43

G
gui (in module bauble), 43

L
lib_dir() (in module bauble.paths), 44
locale_dir() (in module bauble.paths), 44

M
main() (in module bauble), 43
main_dir() (in module bauble.paths), 44
main_is_frozen() (in module bauble), 44

Q
quit() (in module bauble), 44

S
save_state() (in module bauble), 44

U
user_dir() (in module bauble.paths), 45

V
version (in module bauble), 43

51

	Statements
	Installing Ghini
	Using Ghini
	Administration
	Ghini Development
	Supporting Ghini
	Python Module Index

